Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
\(\Leftrightarrow A^2=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow2A^2=\left(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\right)+\left(\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\right)+\left(\frac{x^2y^2}{z^2}+\frac{z^2x^2}{y^2}\right)+12\)
\(\ge2\left(x^2+y^2+z^2\right)+12=6+12=18\)
\(\Rightarrow A\ge3\)
cho x,y,z>0 thỏa mãn:\(x^2+y^2+z^2=3.\)chứng minh:
\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\ge3\)
Áp dụng bất đẳng thức Cauchy ta có:
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\) ; \(z^2+1\ge2z\)
\(x^2+y^2\ge2xy\) ; \(y^2+z^2\ge2yz\) ; \(z^2+x^2\ge2zx\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(xy+yz+zx+x+y+z\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi x = y = z = 1
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
\(VT=\sum\frac{\sqrt{1+a^6+b^6}}{a^3b^3}\ge\sum\frac{\sqrt{3\sqrt[3]{a^6b^6}}}{a^3b^3}=\sqrt{3}\left(\frac{1}{a^2b^2}+\frac{1}{b^2c^2}+\frac{1}{c^2a^2}\right)\)
\(VT\ge\sqrt{3}.3\sqrt[3]{\frac{1}{a^2b^2.b^2c^2.c^2a^2}}=3\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)
Bài 1:
Đặt 2018=a
\(B=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=1+a-\dfrac{a}{a+1}+\dfrac{a}{a+1}=1+a=2019\)
Bạn kiểm tra lại đề
\(z=max\left\{x;y;z\right\}\)hay \(z=min\left\{x;y;z\right\}\)
Lời giải:
Đặt \((x+y+z,xy+yz+xz)=(a,b)\). Bài toán trở thành:
Cho \(a,b\in\mathbb{R}|a+b=5\).CMR: \(a^2-2b\geq 3\)
----------------------------------------------------------------
Với mọi \(x,y,z\in\mathbb{R}\Rightarrow x^2+y^2+z^2\geq xy+yz+xz\)
BĐT đúng vì tương đương với \((x-y)^2+(y-z)^2+(z-x)^2\geq 0\)
Suy ra \((x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow a^2\geq 3b\)
Bây giờ, thử \(a^2-2b=3\)
Giải HPT \(\left\{\begin{matrix} a+b=5\\ a^2-2b=3\end{matrix}\right.\Rightarrow \) \(\left\{\begin{matrix} a=-1-\sqrt{14}\\ b=6+\sqrt{14}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)
Thử \(a^2-2b=4\)
Giải HPT suy ra \(\left\{\begin{matrix} a=-1-\sqrt{15}\\ b=6+\sqrt{15}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)
Vậy kết luận là đề bài sai.