K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 2 2021

Lời giải:

Áp dụng bổ đề sau:

Cho $a,b\geq 1$. Khi đó ta có $\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}$

Bổ đề này có thể CM dễ dàng bằng cách biến đổi tương đương.

----------------------------

Áp dụng bổ đề trên ta có:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

\(\frac{1}{z^3+1}+\frac{1}{xyz+1}\geq \frac{2}{z^2\sqrt{xy}+1}\geq \frac{2}{z^2xy+1}\)

\(\frac{2}{xy+1}+\frac{2}{z^2xy+1}\geq \frac{4}{xyz+1}\)

\(\Rightarrow \frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^3+1}+\frac{1}{xyz+1}\geq \frac{4}{xyz+1}\)

\(\Rightarrow \frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^3+1}\geq \frac{3}{xyz+1}\) (đpcm)

Vậy.........

AH
Akai Haruma
Giáo viên
16 tháng 2 2021

Bạn lưu ý lần sau viết đề bằng công thức toán để được hỗ trợ tốt hơn. Nhìn những đề viết kiểu này làm rất nản!

1 tháng 12 2019

Ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2+y^2-xy\ge xy\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{x+y+z}.\frac{1}{xy}\)

Tương tự: \(\frac{1}{y^3+z^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{yz}\) ;\(\frac{1}{z^3+x^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{zx}\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{z^3+x^3+xyz}\)

\(\le\frac{1}{x+y+z}.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{\left(x+y+z\right)xyz}=\frac{1}{xyz}\)

Dấu \(=\) xảy ra \(\Leftrightarrow x=y=z>0\)

NV
12 tháng 2 2020

\(1=xyz\le\left(\frac{x+y+z}{3}\right)^3\Rightarrow x+y+z\ge3\)

Đặt vế trái là P, ta có: \(P\ge\frac{\left(x+y+z\right)^2}{3+\left(x+y+z\right)}\)

Đặt \(x+y+z=t\Rightarrow t\ge3\)

Ta cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\Leftrightarrow2t^2-3t-9\ge0\)

\(\Leftrightarrow\left(2t+3\right)\left(t-3\right)\ge0\) (luôn đúng với mọi \(t\ge3\))

Dấu "=" xảy ra khi \(t=3\) hay \(x=y=z=1\)

13 tháng 2 2020

Ai giải hộ câu này nhanh đi mà

26 tháng 7 2019

ấy chết,sửa: \(\sqrt{xyz}\) thành \(\sqrt[3]{xyz}\). Em cứ nhầm cái này

26 tháng 7 2019

Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.

Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)

Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)

\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)

\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))

Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.

Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.

NV
25 tháng 3 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+xz+yz}{xyz}=0\Leftrightarrow xy+xz+yz=0\) (1)

\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+xz+yz\right)=0\) (2)

\(\Leftrightarrow x^2+y^2+z^2=0\) (thay (1) vào (2) ta được)

Mà điều này xảy ra khi và chỉ khi \(x=y=z=0\) trái với giả thiết \(x;y;z\ne0\)

\(\Rightarrow\) Đề bài sai