Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x=a+2\\y=b+2\\z=c+2\end{matrix}\right.\)\(\left(a,b,c>0\right)\). Cần cm \(abc\le1\)
Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Leftrightarrow\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}\)
\(\ge\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge2\sqrt{\dfrac{bc}{4\left(b+2\right)\left(c+2\right)}}\)
Tương tự rồi cộng theo nhân theo vế
\(\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\sqrt{\left(a+2\right)^2\left(b+2\right)^2\left(c+2\right)^2}}\)
\(\Leftrightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\Leftrightarrow abc\ge1\)*đúng hay ta có ĐPCM*
Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Ta có: \(x+y+z=1\) nên:
\(\Rightarrow y+z=1-x\)
Thay \(y+z=1-x\) và áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) ta được:
\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2\left(1-y\right)\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)
\(\Rightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1+y=x+2y+z\left(đpcm\right)\)
Áp dụng BĐT AM - GM, ta có:
\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(=4\left(y+z\right)\left(x+z\right)\left(x+y\right)\)
\(\le\frac{\left(x+y+y+z\right)^2}{4}\times4\left(x+z\right)\)
\(=\left(x+2y+z\right)^2\left(x+z\right)\)
\(\le\left(x+2y+z\right)\times\frac{\left(x+2y+z+x+z\right)^2}{4}\)
\(=\left(x+2y+z\right)\times\frac{4\left(x+y+z\right)^2}{4}\)
\(=x+2y+z\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c = \(\frac{1}{3}\)
Dấu = xảy ra:\(\hept{\begin{cases}x=z=\frac{1}{2}\\y=0\end{cases}}\)
Aps dụng bất đẳng thức cô si cho 2 số 1-x và 1-x ta có:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\left(1-z\right)\left(1-x\right)\le\left(\dfrac{1-z+1-x}{2}\right)^2\)
\(\Leftrightarrow4\left(1-z\right)\left(1-x\right)\le\left(1+y\right)^2\)
\(\Leftrightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)\)
Ta có: \(1-y^2\le1\)
\(\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y\right)^2=\left(x+2y+z\right)\left(1-y\right)^2\)
Do đó: \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le x+2y+z\)
Áp dụng BĐT cô-si cho 2 số 1-x và 1-z ta được:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\text{ ( 1 − x ) ( 1 − z )\le(\dfrac{\text{1 − x + 1 −}z}{2})^2 }\)
\(\Leftrightarrow\text{4 ( 1 − x ) ( 1 − z ) ≤ ( 1 + y ) ^2}\)
\(\Leftrightarrow\text{ 4 ( 1 − x ) ( 1 − z ) ( 1 − y ) ≤ ( 1 + y ) ^2 ( 1 − y )}\)
mặt khác\(\text{ 1 − y ^2 ≤ 1}\)
\(\text{( 1 + y ) ^2 ( 1 − y ) = ( 1 + y ) ( 1 − y ^2) = ( x + 2y + z ) ( 1 − y^2 ) (1+y)^2(1−y)=(1+y)(1−y^2)=(x+2y+z)(1−y^2)}\)Do đó: 4(1−x)(1−y)(1−z)≤x+2y+z