\(\frac{3}{2}\)TÌm min 

P=\(\frac{\sqrt{x^2+xy+y^2}}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Hi! Mình có lời giải cho phần này rồi. Mình sẽ post lên sớm

28 tháng 3 2017

Hi ~! Mình xin slot trước :)

Giải

Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\) khi đó \(P=\frac{3\sqrt{3}}{4}\)

Ta sẽ chứng minh nó là GTNN của \(P\)

Ta có: \(x^2+xy+y^2=\frac{3\left(x+y\right)^2+\left(x-y\right)^2}{4}\ge\frac{3\left(x+y\right)^2}{4}\)

Do đó ta cần chứng minh 

\(\frac{x+y}{4yz+1}+\frac{y+z}{4xz+1}+\frac{x+z}{4xy+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+y}{\left(y+z\right)^2+1}+\frac{y+z}{\left(x+z\right)^2+1}+\frac{x+z}{\left(x+y\right)^2+1}\ge\frac{3}{2}\)

Ta có: \(x+y+z=\frac{3}{2}\Rightarrow2x+2y+2z=3\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=2\)

Đặt \(\hept{\begin{cases}a=x+y\\b=y+z\\c=z+x\end{cases}}\) thì ta cần chứng minh 

\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}\)\(\forall\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\)

Lại có: \(\frac{a}{b^2+1}=a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)

Tương tự ta cũng có: \(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)

Cộng theo vế các BĐT ta có: \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a-\frac{ab}{2}+b-\frac{bc}{2}+c-\frac{ac}{2}\)

\(=\left(a+b+c\right)-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\) 

BĐT đã được c/m vậy ta có \(P\ge\frac{3\sqrt{3}}{4}\Leftrightarrow x=y=z=\frac{1}{2}\)

19 tháng 11 2015

gọi P là cái 1/x+1/y+1/z nha

1) (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/(xy) + 2/(yz) + 2/(zx) 
---> 3 = P + 2(x+y+z)/(xyz) = P + 2 ---> P = 1 

19 tháng 11 2015

bạn giải đi rùi mình tick cho

24 tháng 10 2019

@Akai Haruma

@Trần Thanh Phương

@HISINOMA KINIMADO

31 tháng 7 2019

Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)

Áp dụng BĐT Buniacoxki ta có 

\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)

=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)

=> \(A\ge\sqrt{3}\)

\(MinA=\sqrt{3}\)khi x=y=z=3

14 tháng 8 2020

\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)

\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)

\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)

Dấu = xảy ra khi \(x=y=z=1\)

6 tháng 10 2018

\(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\Rightarrow x+y+z\ge3\)

\(P=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\) 

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)  

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x+2+x^2-2x+4\right)+\left(y+2+y^2-2y+4\right)+\left(z+2+z^2-2z+4\right)}\) 

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)-2\left(xy+yz+zx\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)

Dự đoán Min P=1 khi x+y+z=3

Đặt \(t=x+y+z\ge3\) 

\(\Rightarrow P\ge\frac{2t^2}{t^2-t+12}\Rightarrow P-1\ge\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t-3\right)\left(t+4\right)}{t^2-t+12}\ge0\) 

\(\Rightarrow P\ge1\)

8 tháng 10 2018

bạn là một thiên tài

22 tháng 11 2015

\(\frac{1}{x}=a;\text{ }\frac{1}{y}=b;\text{ }\frac{1}{z}=c\Rightarrow a+b+c=\sqrt{3}\)

\(P=\sqrt{2b^2+a^2}+\sqrt{2c^2+b^2}+\sqrt{2a^2+c^2}\)

Tìm Min P giờ khá đơn giản, bạn tự chứng minh nhé

19 tháng 3 2017

Ta đặt \(x=tanA;y=tanB;z=tanC\) với \(ABC\) là các góc tam giá từ đây cần c/m

\(sinA+sinB+sinC\le\frac{3\sqrt{3}}{2}\)

tài liệu c/m BĐT này đầy trên mạng bn có thể tham tham khảo

VD:Cm : sinA+sinB+sinC bé hơn hoặc bằng (3* căn3)/2? | Yahoo Hỏi & Đáp

19 tháng 3 2017

Dự đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta tìm được \(P=\frac{3\sqrt{3}}{2}\)

Ta sẽ chứng minh nó là GTNN

Thật vậy, ta cần chứng minh 

\(Σ\frac{1}{\sqrt{x^2+xy+xz+yz}}\le\frac{3\sqrt{3}}{2\sqrt{xy+xz+yz}}\left(xy+yz+xz=1\right)\)

\(\LeftrightarrowΣ\sqrt{x+y}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)

Nhưng theo BĐT Cauchy-Schwarz ta có: 

\(\left(Σ\sqrt{x+y}\right)^2\le\left(1+1+1\right)Σ\left(x+y\right)=6\left(x+y+z\right)\)

Như vậy, ta còn phải chứng minh :

\(\sqrt{6\left(x+y+z\right)}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)

\(\Leftrightarrow9\left(x+y\right)\left(x+z\right)\left(y+z\right)\ge8\left(x+y+z\right)\left(xy+xz+yz\right)\)

\(\LeftrightarrowΣz\left(x-y\right)^2\ge0\) luôn đúng. Nên \(P_{Min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

17 tháng 4 2017

hiu hiu

ai giúp giùm vs

17 tháng 4 2017

coooossssi bạn ơi