\(x+y+z=6\) cà \(x,y,z\)là các số dương. Tìm giá trị nhỏ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Áp dụng BĐT AM-GM, ta được \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)

\(\Rightarrow P\ge\frac{x+y+z}{2}=3\)

Đẳng thức xảy ra khi x = y = z = 2

Vậy minP = 3 tại (x,y,z) = (2,2,2)

6 tháng 1 2017

mk chưa hk cái bdt này

16 tháng 10 2017

trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)

4 tháng 11 2019

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)

TT...

\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)

\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)

\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)

Vậy GTNN của Q là 3 khi x = y = z = 1

16 tháng 6 2016

Khi 1 thì B = 5 do đó nếu ta chứng minh được B > 5 thì đây cũng chính là giá trị nhỏ nhất của B.

Viết B lại dưới dạng thuần nhất ta được : \(B=\frac{x}{z}+\frac{z}{y}+\frac{9y}{x+y+z}\)

Theo bất đẳng thức Cauchy-Schwarz: \(B\ge\frac{\left(x+z+3y\right)^2}{zx+yz+y\left(x+y+z\right)}\)

Cần chứng minh \(\left(x+z+3y\right)^2\ge5\left[zx+yz+y\left(x+y+z\right)\right]\)  (*)

Đã có x > y > z nên tồn tại 2 số thực m,n không âm sao cho m = a + z ; n = b + z

Thay m,n vào (*) ta được kết quả thu gọn là a2 + ab + 4b2 + 5bz > 0

Do đó P = 5 đạt GTNN

18 tháng 6 2016

Ta có : \(x\ge y\ge z\)\(\Rightarrow\frac{x}{z}\ge\frac{x}{y}\Rightarrow B\ge\frac{x}{y}+\frac{z}{y}+3y=\frac{3-y}{y}+3y=\frac{3}{y}+3y-1\ge2.\sqrt{\frac{3}{y}.3y}-1=5\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}\frac{x}{z}+\frac{z}{y}+3y=5\\x+y+z=3\\\frac{3}{y}=3y\end{cases}\)\(\Leftrightarrow x=y=z=1\)

Vậy Min B = 5 <=> x = y = z = 1.

 

20 tháng 10 2018

Áp dung BĐT co- si, ta có:

\(y+z\le\sqrt{2\left(y^2+z^2\right)}\)

D đó:   \(\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

tương tự:   \(\frac{y^2}{z+x}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}},\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

\(\Rightarrow T\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Đặt  :  \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{x^2+z^2}=c\left(a,b,c>0\right)\)

Khi đó:  \(T\ge\frac{1}{2\sqrt{2}}\left(\frac{a^2+c^2-b^2}{b}+\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}\right)\)

\(\Leftrightarrow T\ge\frac{1}{2\sqrt{2}}\left(\left(\frac{\left(a+c\right)^2}{2b}-b\right)+\left(\frac{\left(a+b\right)^2}{2c}-c\right)+\left(\frac{\left(b+c\right)^2}{2a}-a\right)\right)\)

\(\ge\frac{1}{2\sqrt{2}}\left(2\left(a+c\right)-3b+2\left(a+b\right)-3c+2\left(b+c\right)-3a\right)\)

\(\Rightarrow T\ge\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2}\sqrt{\frac{2017}{2}}\)

20 tháng 10 2018

Đặt xong thì suy ra:

\(x^2=\frac{a^2+c^2-b^2}{2}\)

\(y^2=\frac{a^2+b^2-c^2}{2}\)

\(z^2=\frac{b^2+c^2-a^2}{2}\)

Phần sau thì thay vào rồi phân h ra thôi

16 tháng 5 2017

Đặt: y + z = a thì ta có

\(x\le2a\)

Từ đề bài thì ta có thể suy ra

\(A\le\frac{2x}{a^2}-\frac{1}{\left(x+a\right)^3}\)

\(\le\frac{4}{a}-\frac{1}{27a^3}=\frac{108a^2-1}{27a^3}\)

 \(=16-\frac{\left(6a-1\right)^2\left(12a+1\right)}{27a^3}\le16\)

 Vậy GTLN là \(A=16\). Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{1}{3}\\y=z=\frac{1}{12}\end{cases}}\) 

16 tháng 5 2017

Làm sao để tách được bởi vì làm sao dự đoán dượcđiểm rơi?

7 tháng 1 2020

Áp dụng bđt AM-GM ta được:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge2\sqrt{\frac{y^2}{z+x}.\frac{z+x}{4}}=y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}=z\)

Cộng từng vế các bất đẳng thức trên ta được

\(A+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow A\ge\frac{x+y+z}{2}=1\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

8 tháng 1 2020

Cách 2:Dù dài hơn Lê Tài Bảo Châu

\(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\left(x+y+z\right)\cdot\frac{x}{y+z}\)

\(\frac{y^2}{z+x}+y=\left(x+y+z\right)\cdot\frac{y}{z+x};\frac{z^2}{x+y}+z=\left(x+y+z\right)\cdot\frac{z}{x+y}\)

Suy ra \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

Đến đây thay x+y+z=2 và BĐT netbitt là ra ( chứng minh netbitt nha )

Cách 3:

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=1\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)