Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
Đặt \(\left(x^2;y^2;z^2\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
Đặt vế trái là P \(\Rightarrow P=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow P\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(P\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)
\(P\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)
Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
Ta có đánh giá sau: \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, biến đổi tương đương:
\(a^3-a^2b-\left(ab^2-b^3\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng:
\(VT=\sum\frac{1}{a^3+b^3+1}=\sum\frac{abc}{a^3+b^3+abc}\le\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=1\Rightarrow\left(x;y;z\right)=1\)
Lời giải:
Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)
Khi đó:
\(\text{VT}=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)
Xét hiệu \(a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0, \forall a,b>0\)
\(\Rightarrow a^3+b^3\geq ab(a+b)\)
\(\Rightarrow a^3+b^3+abc\geq ab(a+b+c)\Rightarrow \frac{abc}{a^3+b^3+abc}\leq \frac{abc}{ab(a+b+c)}=\frac{c}{a+b+c}\)
Hoàn toàn tương tự:
\(\frac{abc}{b^3+c^3+abc}\leq \frac{a}{a+b+c};\frac{abc}{c^3+a^3+abc}\leq \frac{b}{a+b+c}\)
Cộng theo vế các BĐT vừa thu được :
\(\Rightarrow \text{VT}\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Ta chứng minh
\(a+b\ge\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Leftrightarrow\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^2\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\ge0\)(đúng )
Áp đụng vào bài toán ta được
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
\(\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)+1}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1}+\frac{1}{\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+1}\)
\(=\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)
Ta có BĐT \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\left(true\right)\)
Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right);z^3+x^3\ge zx\left(z+x\right)\)
Do đó \(VT\le\frac{1}{xy\left(x+y\right)+1}+\frac{1}{yz\left(y+z\right)+1}+\frac{1}{zx\left(z+x+1\right)}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\) (thay 1 = xyz)
\(=\frac{1}{\left(x+y+z\right)}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{xyz}=1\)(đpcm)
Đẳng thức xảy ra khi x =y = z
P/s :Bài này em làm nhiều trên diễn đàn hoc24 và OLM rồi nhưng cứ nhai lại:D
Với x,y>0 luôn có: \(x^3+y^3\ge xy\left(x+y\right)\) (1)
<=> \(\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)
<=>\(\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)
<=> \(\left(x+y\right)\left(x-y\right)^2\ge0\)( luôn đúng)
Dấu "=" xảy ra <=> x=y>0
Từ (1) <=> \(x^3+y^3+1\ge xy\left(x+y\right)+1=xy\left(x+y\right)+xyz=xy\left(x+y+z\right)=\frac{1}{z}\left(x+y+z\right)\)( do xyz=1)
=> \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)
CM tương tự : \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)
\(\frac{1}{z^3+xz+x^3}\le\frac{y}{x+y+z}\)
Cộng vế với vế => \(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)
Dấu "=" xảy ra <=> x=y=z=1
Chỉ có biến đổi tương đương:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\le\frac{2}{1+xy}\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\le2\left(1+x^2\right)\left(1+y^2\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy\le2+2x^2+2y^2+2x^2y^2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)\le0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\le0\) (luôn đúng với mọi \(xy\le1\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
b/ Tính chất của z ở câu b là gì bạn? z bất kì là ko được đâu, hơn nữa mẫu số của vế phải thấy hơi kì quặc
Chú ý: Bổ sung điều kiện x,y,z > 0
Đặt \(x=a^3;y=b^3;z=c^3\)
Ta có x,y,z > 0 và xyz = 1 nên a,b,c > 0 và abc = 1
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\ge\left(a+b\right)ab\)(do a + b > 0 ; \(a^2-ab+b^2\ge ab\))
\(\Rightarrow a^3+b^3+1=\ge\left(a+b\right)ab+abc=ab\left(a+b+c\right)>0\)
\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự ta có: \(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)}\);\(\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng từng vế của bđt trên, ta được:
\(\text{Σ}_{cyc}\frac{1}{a^3+b^3+1}\le\frac{1}{a+b+c}\left(\text{Σ}_{cyc}\frac{1}{ab}\right)=\frac{1}{a+b+c}\left(a+b+c\right)=1\)
Mà \(\text{Σ}_{cyc}\frac{1}{a^3+b^3+1}=\text{Σ}_{cyc}\frac{1}{x+y+1}\text{ }\)nên
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\le1\)
Đẳng thức xảy ra khi x = y = z = 1