K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2015

ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz) 
<=> xy+yz+xz = 0 (*) 

****) ÁP DỤNG KẾT QUẢ SAU : 

ta có :  a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc 
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :

x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2) 
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))

<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**) 

+/ mà : x+y+z = 1 (***)

****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0 
<=> U = 0 HOẶC U = 1

+/ suy ra : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0 

+/ DO ĐÓ : x+y^2+z^3 = 1 

+/ SUY RA : điều phải chứng minh !

 

3 tháng 5 2015

ta có : x^2+y^2+z^2 = 1 <=> (x+y+z)^2 = 1+2(xy+yz+xz) <=> 1 = 1 +2(xy+yz+xz) 
<=> xy+yz+xz = 0 (*) 

****) ÁP DỤNG KẾT QUẢ SAU : 

ta có :  a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

thật vậy : (a+b+c)^3 = a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)-3abc 
<=> a^3+b^3+c^3-3abc = (a+b+c)^3-3(a+b+c)(ab+bc+ac) = (a+b+c)((a+b+c)^2-3(ab+bc+ac))
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)(2a^2+2b^2+2c^2-2ab-2ac-2bc)
<=> a^3+b^3+c^3-3abc = (1/2)(a+b+c)((a-b)^2+(b-c)^2+(c-a)^2)

****) DO ĐÓ ÁP DỤNG VÀO BÀI TA ĐƯỢC :

x^3+y^3+z^3-3xyz = (1/2)(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2) 
= (1/2)(x+y+z)(2(x^2+y^2+z^2)-2(xy+yz+xz))

<=> 1-3xyz = (1/2).1.2 = 1 <=> xyz = 0 (**) 

+/ mà : x+y+z = 1 (***)

****) TỪ (*)(**)(***) TA SUY RA : x,y,z là 3 nghiệm của pt bậc 3 sau : U^3-U^2 = 0 
<=> U = 0 HOẶC U = 1

+/ => : 1 trong 3 phần tử x,y,z bằng 1, 2 phần tử còn lại sẽ là bằng 0 

+/ do đó : x+y^2+z^3 = 1 

+/ =>: điều phải chứng minh !

26 tháng 10 2021

\(a,=\left(x-y\right)\left(x+y\right)+11\left(x-y\right)=\left(x-y\right)\left(x+y+11\right)\\ b,=\left(x+z\right)\left(x^2-xz+z^2\right)+y\left(x^2+z^2-xz\right)\\ =\left(x^2-xz+z^2\right)\left(x+y+z\right)\)

26 tháng 10 2021

a. x2 - y2 + 11x - 11y

= (x + y)(x - y) + 11(x - y)

= (x + y + 11)(x - y)

b. Mik ko hiểu đề lắm

7 tháng 9 2018

Đáp án cần chọn là: B

a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)

=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)

=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)

b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)

=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)

=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{4}=\dfrac{36}{y^2}=\dfrac{z^3}{16}=4\)

=>x=16; \(y\in\left\{3;-3\right\}\); z=4

 

15 tháng 11 2023

1) Đ

2) Đ

3) S

4) Đ

28 tháng 2 2021

Ta có:(x,y) = 1 =>x, y nguyên tố cùng nhau

 

                          x

              1

                      3

                             y

            6

                     4

(LOẠI) (NHÂN)

Vậy x = 3;y = 4

28 tháng 2 2021

Ta có:(x,y) = 1 =>x, y nguyên tố cùng nhau

 

X

1

3

Y

6

4

(LOẠI) (NHÂN)

Vậy x = 3;y = 4