Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3-2P=\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{xz}}+\frac{z}{z+2\sqrt{xy}}\)
\(3-2P\ge\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
Dấu "=" xảy ra khi \(x=y=z\)
\(M\le\sqrt{\left(1+1\right)\left(x+y+2\right)}=\sqrt{20}=4\sqrt{5}\)
\(M_{max}=4\sqrt{5}\) khi \(\left\{{}\begin{matrix}x-2=y+4\\x+y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Tham khảo tại đây:
Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\Rightarrow\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=1\end{matrix}\right.\)
\(K=\frac{\frac{1}{a}}{\sqrt{\frac{1}{bc}\left(1+\frac{1}{a^2}\right)}}+\frac{\frac{1}{b}}{\sqrt{\frac{1}{ac}\left(1+\frac{1}{b^2}\right)}}+\frac{\frac{1}{c}}{\sqrt{\frac{1}{ab}\left(1+\frac{1}{c^2}\right)}}\) \(=\frac{\frac{1}{a}}{\sqrt{\frac{a^2+1}{a^2bc}}}+\frac{\frac{1}{b}}{\sqrt{\frac{b^2+1}{ab^2c}}}+\frac{\frac{1}{c}}{\sqrt{\frac{c^2+1}{abc^2}}}\)
\(=\sqrt{\frac{bc}{a^2+1}}+\sqrt{\frac{ca}{b^2+1}}+\sqrt{\frac{ab}{c^2+1}}\) \(=\sqrt{\frac{bc}{a^2+ab+bc+ca}}+\sqrt{\frac{ca}{b^2+ab+bc+ca}}+\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)
\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{b}{b+c}\right)\) \(\Rightarrow K\le\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\sqrt{3}\)
Đặt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) (chẳng có lý do j đâu mình gõ a,b,c quen hơn thôi)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)
\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
Áp dụng BĐT AM-GM ta có:
\(VT=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{xz}{y+xz}}+\sqrt{\frac{yz}{x+yz}}\)
\(=\sqrt{\frac{xy}{z\left(x+y+z\right)+xy}}+\sqrt{\frac{xz}{y\left(x+y+z\right)+xz}}+\sqrt{\frac{yz}{x\left(x+y+z\right)+yz}}\)
\(=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}+\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
\(\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}\right)\)
\(=\frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Dấu "=" <=> \(x=y=z=\frac{1}{3}\)
Ủng hộ và kb với mình ha ^^
Sử dụng Cô-si ngược dấu có thêm hằng số
Kq là 1 nhé