Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
ta có: (x+y+z)2=0
\(\Leftrightarrow\)x2+y2+z2+2(xy+z+xz)=0
\(\Leftrightarrow\)1+2(xy+yz+xz)=0
\(\Leftrightarrow\)xy+yz+xz=\(\frac{-1}{2}\)
lại có x2.y2+y2.z2+x2.z2=(xy+yz+xz)2-2xyz(x+y+z)=\(\frac{1}{4}\)
\(\Rightarrow\)x4+y4+z4=(x2+y2+z2)2-2(x2.y2+y2.z2+x2.z2)=\(1-2.\frac{1}{4}\)=\(\frac{1}{2}\)
vậy x4+y4+z4=\(\frac{1}{2}\)
(tick nka)
\(\text{Cho:}x^2+y^2+z^2=1\text{.Chứng minh rằng:}\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{z+2y}\ge\frac{1}{3}\)
\(\text{Áp dụng BĐT Cosi cho 2 số dương, ta có:}\)
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
\(\text{Lại có:}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\text{Do đó:}\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+x^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
\(\text{Dấu "=" xảy ra }\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
cho minh hoi phan bat dang thuc cosi la ban dung cong thuc the nao ak
\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)
\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)
\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+x+y+z=x+y+z\)
\(\Rightarrow Q=\frac{x^2}{y+z}+\frac{y^2}{x+y}+\frac{z^2}{x+y}=0\) (dpcm)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)\(\Rightarrow xy+yz+xz=0\) (nhân cả hai vế với \(xyz\) )
Ta có : \(VP=\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xy\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=VT\)(đpcm)
tìm trc khi hỏi
[Toán 9] Phương trình vô tỉ - Bất đẳng thức - Số nguyên tố | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
Cho các số thực x,y,z thỏa mãn: Chứng minh rằng: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
CM: $x^2+y^4+z^6\leqslant 2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Chứng minh rằng: $ x^2+y^4+z^6 \le 2 $ - Bất đẳng thức và cực trị - Diễn đàn Toán học