Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{ x + 5y = 21 (1)
{ 2x + 3z = 51 (2)
. Ta có : (1) <=> x = 21 - 5y
mà y ≥ 0 --> 21 - 5y ≤ 21 --> x ≤ 21
. (2) <=> 3z = 51 - 2z ≥ 51 - 2.42 = 9 ( do x ≤ 21 --> -2x ≥ - 42)
--> 3z ≥ 9 <=> z ≥ 3
- nhân 2 vế của (2) với 2 rồi cộng với (1) ta có
5x + 5y + 6z = 123
<=> 5x + 5y + 5z = 123 - z
<=> 5M = 123 - z
. theo trên ta có z ≥ 3 --> 123 - z ≤ 123 - 3 = 120
--> 5M ≤ 120 <=> M ≤ 24
Dấu " = " xảy ra <=> x = 21 ; y = 0 ; z = 3
đề nga sơn kaka , anh vừa làm xong , 3x+5y+3z=51+21
3.(x+y+z)=72-2y
x+y+z=72-2y/3
x+y+z bé hơn hoạc bằng 24
/x+y+z/^2 bé hơn hoạc bằng 24^2 , dấu bằng xảy ra khi nào ???????
Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) và \(3x+7y+5z=30\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x+7y+5z}{3.21+7.14+5.10}=\frac{30}{211}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{21}=\frac{30}{211}\Rightarrow x=\frac{630}{211}\\\frac{y}{14}=\frac{30}{211}\Rightarrow y=\frac{420}{211}\\\frac{z}{10}=\frac{30}{211}\Rightarrow z=\frac{300}{211}\end{cases}}\)
Vậy ...
hok tốt!
Ta có: \(\hept{\begin{cases}2x=3y\\5y=7z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{21}=\frac{y}{14}\\\frac{y}{14}=\frac{z}{10}\end{cases}\Rightarrow}\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
....................................................................
b tự làm nốt nhé
chúc bạn học tốt~
\(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}\)hay \(\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}\)hay \(\frac{y}{14}=\frac{z}{10}\)
suy ra: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)hay \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5x}{50}=\frac{3x+7y-5z}{63+98-50}=\frac{30}{111}=\frac{10}{37}\)
đến đây bn tính tiếp nhé
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2+2y^2-3z^2}{2\cdot9+2\cdot16-3\cdot25}=\frac{-100}{-25}=4\)
\(\Rightarrow x^2=36;y^2=64;z^2=100\)
\(\Rightarrow\) x = + 6; y = + 8; z = + 10
2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0
=> 2x=3y; 5y=2z ; 3z=5x => x/3=y/2; y/2=z/5
=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31
x/3 = 3y/6=2z/10 = (x-3y+2z)/7
=> (12x+5y-3z)/ (x-3y+2z)=31/7
Tham khảo
https://olm.vn/hoi-dap/tim-kiem?q=Cho+x;y;z%3E=0+th%E1%BB%8Fa+m%C3%A3n+x+5y=21+v%C3%A0+2x+3z=51T%C3%ACm+GTLN+P=(x+y+z)2&id=911653