Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề nha: x+y+z=0
a)
Xét x+y+z=0
(x+y+z)2=02
x2+y2+z2+2xy+2yz+2zx=0
=> x2+y2+z2=-2xy-2yz-2zx
Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)
=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)
Thay x2+y2+z2=-2xy-2yz-2zx vào (1)
=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)
b)
Xét x+y+z=0 ba lần:
- Lần 1:x+y+z=0
<=> x+y=0-z
<=>(x+y)2=(0-z)2
<=>x2+2xy+y2=z2
<=>x2+y2-z2=-2xy(1)
-Lần 2: x+y+z=0
<=> y+z=0-x
<=>(y+z)2=(0-x)2
<=>y2+2yz+z2=x2
<=>y2+z2-x2=-2yz(2)
-Lần 3: x+y+z=0
<=>z+x=0-y
<=>(z+x)2=(0-y)2
<=>z2+2zx+x2=y2
<=> z2+x2-y2=-2zx(3)
Thay (1),(2),(3) vào Q, ta có:
=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)
a)
Có \(x+y+z=0\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)
\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Phân tích :
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2\)
\(=2\left(x^2+y^2+z^2\right)+\left[-2\left(xy+yz+xz\right)\right]\)(Áp dung (1)ta được :)
\(=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2\)
\(=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow P=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(\Rightarrow P=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\)
\(\Rightarrow P=\dfrac{1}{3}\)
\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)
\(\Rightarrow P=\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left[-\left(y+z\right)\right]^2+\left[-\left(z+x\right)\right]^2+\left[-\left(x+y\right)\right]^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left(y+z\right)^2+\left(z+x\right)^2\left(x+y\right)^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{-\left[\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=-1\)
\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}{y^2-2yz+z^2+z^2-2zx+x^2+x^2-2xy+y^2}\)
\(=\frac{-2\left(xy+yz+zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\)
\(=\frac{-2\left(xy+yz+zx\right)}{2\left[\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-\left(xy+yz+zx\right)\right]}\)
\(=\frac{-2\left(xy+yz+zx\right)}{2\left[-3\left(xy+yz+zx\right)\right]}=\frac{1}{3}\)
Cho x+y+z=0 Rút gọn:\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Ta có: \(x+y+z=0\Rightarrow\hept{\begin{cases}-x=y-z\\-y=z-x\\-z=x-y\end{cases}}\)
Mà \(x^2=\left(-x\right)^2;y^2=\left(-y\right)^2;z^2=\left(-z\right)^2\)
Thế vào biểu thức, ta được:
\(\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\)
\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)
\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
\(=\frac{-2\left(xy+yz+zx\right)}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\)
\(=\frac{-2\left(xy+yz+zx\right)}{2\left[-2\left(xy+yz+zx\right)\right]-2\left(xy+yz+xz\right)}\)
\(=\frac{-2\left(xy+yz+zx\right)}{-4\left(xy+yz+zx\right)-2\left(xy+yz+xz\right)}\)
\(=\frac{-2\left(xy+yz+zx\right)}{-6\left(xy+yz+zx\right)}\)
\(=\frac{1}{3}\)
Ta có: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(x^2+2xy+y^2=z^2\)
\(x^2+y^2-z^2=-2xy\)
\(\frac{2x^2y+2xy^2}{x^2+y^2-z^2}\)
\(=\frac{2xy\left(x+y\right)}{-2xy}\)
\(=\frac{-2xyz}{-2xy}\)
\(=z\)
\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}{2x^2+2y^2+2z^2-2xy+2yz+2xz}\)
\(=\frac{-2\left(xy+yz+xz\right)}{2\left(x+y+z\right)^2-6\left(xy+yz+xz\right)}\)
\(=-\frac{1}{3}\)
ta có: x+y+z=0
=>\(\left(x+y+z\right)^2=0=>x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)
A=\(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\dfrac{x^2+y^2+z^2}{y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2}=\dfrac{x^2+y^2+z^2}{2y^2+2z^2+2x^2-2\left(yz+xy+xz\right)}=\dfrac{x^2+y^2+z^2}{2y^2+2z^2+2x^2+x^2+y^2+z^2}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
vậy.......
chúc bạn học tốt ^ ^
Ta có :
\(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
⇔ \(\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\) (*)
Lại có :
\(x+y+z=0\)
⇔ \(\left(x+y+z\right)^2=0\)
⇔ \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
⇔ \(x^2+y^2+z^2=-2\left(xy+yz+xz\right)\)
Thay vào biểu thức (*) ta có :
\(\dfrac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(xy+yz+xz\right)}\)
= \(\dfrac{-2\left(xy+yz+xz\right)}{-6\left(xy=yz+xz\right)}\)
= \(\dfrac{1}{3}\)