K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Ta có: \(x+y+z=0\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{matrix}\right.\)

Đặt \(A=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}+3\)

Thay \(x=-\left(y+z\right),\) \(y=-\left(z+x\right),\) \(z=-\left(x+y\right)\) vào A, ta có:

\(A=\frac{y+z}{-\left(y+z\right)}+\frac{z+x}{-\left(z+x\right)}+\frac{x+y}{-\left(x+y\right)}+3\)

\(\Leftrightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)+3\)

\(\Leftrightarrow A=-3+3\)

\(\Leftrightarrow A=0\) ( ĐPCM )

18 tháng 3 2020

ta có:

\(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}+3\)

=\(\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)

\(=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

mà x+y+z=0

\(\Rightarrow\)dpcm

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Bài 3:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bài 4:

Áp dụng BĐT Cauchy cho 3 số dương:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\)

1 tháng 11 2017

A = \(\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right)\left(x+y+z\right)=\left(x^2-xy+y^2\right).0=0\)Kuroba Kaito = Kaito Kid :D

15 tháng 4 2019

(x+y)(y+z)(x+z)=8xyz

<=>\((xy+xz+y^2+yz)(x+z)=8xyz\)

<=>\(x^2y+x^2z+y^2z+xyz+xyz+xz^2+z^2y+yz^2=8xyz\)

<=> \(x^2y+x^2z+y^2x+xz^2+y^2z+yz^2-6xyz=0\)

<=> \(y(x^2+z^2-2xz)+x(y^2-2yz+z^2)+z(y^2-2yx+x^2)=0\)

<=>\(y(x-z)^2+x(y-z)^2+z(x-y)^2=0\)

Mà x,y,z dương

=> \((x-z)^2=0=>x=z\)

\((x-y)^2=0=>x=y\)

\((y-z)^2=0=>y=z\)

Vậy x=y=z

5 tháng 5 2017

\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+x+y+z=x+y+z\)

\(\Rightarrow Q=\frac{x^2}{y+z}+\frac{y^2}{x+y}+\frac{z^2}{x+y}=0\) (dpcm)

9 tháng 5 2019

Áp dụng BĐT AM-GM cho các số dương ta được:

\(x+y\ge2\sqrt{xy}\left(1\right)\)

\(y+z\ge2\sqrt{yz}\left(2\right)\)

\(x+z\ge2\sqrt{xz}\left(3\right)\)

Nhân lần lượt từng vế của ba bđt 1;2;3 ta được:

\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{xz}.2\sqrt{yz}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)