Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y,z>0 và xyz=1. chứng minh rằng \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge1+x+y+z\)
Lời giải:
Sửa đề: \((x+y)(y+z)(x+z)\geq 2(1+x+y+z)\)
Áp dụng BĐT AM-GM:
\((x+y+z)(xy+yz+xz)\geq 3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)
\(\Leftrightarrow xyz\leq \frac{(x+y+z)(xy+yz+xz)}{9}\)
Ta thực hiện biến đổi:
\((x+y)(y+z)(z+x)=xy(x+y)+yz(y+z)+xz(x+z)+2xyz\)
\(=(x+y+z)(xy+yz+xz)-xyz\geq (x+y+z)(xy+yz+xz)-\frac{(x+y+z)(xy+yz+xz)}{9}\)
\(\Leftrightarrow (x+y)(y+z)(x+z)\geq \frac{8}{9}(x+y+z)(xy+yz+xz)\)
Theo hệ quả của BĐT AM-GM:
\((xy+yz+xz)^2\geq 3xyz(x+y+z)=3(x+y+z)\)
\(\Rightarrow xy+yz+xz\geq \sqrt{3(x+y+z)}\)
\(\Rightarrow (x+y)(y+z)(x+z)\geq \frac{8}{9}(x+y+z)\sqrt{3(x+y+z)}\)
Ta sẽ cm \(\frac{8}{9}(x+y+z)\sqrt{3(x+y+z)}\geq 2(1+x+y+z)\)
Đặt \(\sqrt{3(x+y+z)}=t\). Dễ thấy \(x+y+z\geq 3\sqrt[3]{xyz}=3\Rightarrow t\geq 3\)
Ta cần cm \(\frac{8}{9}.\frac{t^2}{3}.t\geq 2(1+\frac{t^2}{3})\Leftrightarrow 8t^3\geq 18(3+t^2)\)
\(\Leftrightarrow (t-3)(8t^2+6t+18)\geq 0\) (luôn đúng với \(t\geq 3\))
Do đó ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Đặt \(P=\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{z-x}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{z-x}\right)=9\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-y}{z}=a\\\dfrac{y-z}{x}=b\\\dfrac{x-z}{y}=c\end{matrix}\right.\)
\(\Leftrightarrow P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ =1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\\ =3+\dfrac{a+c}{b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}\)
Ta có \(\dfrac{a+c}{b}=\dfrac{\dfrac{x-y}{z}+\dfrac{z-x}{y}}{\dfrac{y-z}{x}}=\dfrac{xy-y^2+z^2-xz}{yz}\cdot\dfrac{x}{y-z}\)
\(=\dfrac{\left(z-y\right)\left(y+z-x\right)x}{yz\left(y-z\right)}=\dfrac{x\left(x-y-z\right)}{yz}\)
Mà \(x+y+z=0\Leftrightarrow x=-y-z\)
\(\Leftrightarrow\dfrac{a+c}{b}=\dfrac{x\left(x+x\right)}{yz}=\dfrac{2x^2}{yz}\)
Cmtt ta được \(\dfrac{a+b}{c}=\dfrac{2y^2}{xz};\dfrac{b+c}{a}=\dfrac{2z^2}{xy}\)
Cộng vế theo vế
\(\Leftrightarrow P=\dfrac{2x^2}{yz}+\dfrac{2y^2}{xz}+\dfrac{2z^2}{xy}+3=\dfrac{2x^3+2y^3+2z^3}{xyz}+3\\ \Leftrightarrow P=\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}+3\)
Lại có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)
Thế vào \(P\)
\(\Leftrightarrow P=\dfrac{2\cdot3xyz}{xyz}+3=6+3=9\)
Ta có:
\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Ta có:
\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\)
Tương tự ...
Cộng lại ta có:
\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)
Do đó ta chỉ cần chứng minh:
\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)
Bài dễ mừ, có phải Croatia thật ko vậy :)) (viết đề bị nhầm, là x,y,z dương chứ :))
Áp dụng Cauchy-Schwarz dạng cộng mẫu số:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)
\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)
Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
Dấu bằng xảy ra khi và chỉ khi x=y=z, Xong! :))
BĐT cần chứng minh tương đương
\(VT\ge4\left(x+y+z\right)\)
\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Theo BĐT Cauchy-Schwarz và AM-GM, ta có:
\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)
Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)
Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)
\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)
@Phương An
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
\(\sqrt{x\left(1-y\right)\left(1-z\right)}=\sqrt{x\left(yz-y-z+1\right)}=\sqrt{x\left(yz-y-z+x+y+z+2\sqrt{xyz}\right)}\)
\(=\sqrt{x\left(yz+x+2\sqrt{xyz}\right)}=\sqrt{x^2+2x\sqrt{xyz}+xyz}=\sqrt{\left(x+\sqrt{xyz}\right)^2}\)
\(=x+\sqrt{xyz}\)
Tương tự: \(\sqrt{y\left(1-x\right)\left(1-z\right)}=y+\sqrt{xyz}\) ; \(\sqrt{z\left(1-x\right)\left(1-y\right)}=z+\sqrt{xyz}\)
\(\Rightarrow VT=x+y+z+3\sqrt{xyz}=1-2\sqrt{xyz}+3\sqrt{xyz}=1+\sqrt{xyz}\) (đpcm)
❤ѕѕѕσиɢσкυѕѕѕ❤
\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)-8xyz\ge0\)
Ta có: \(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(x+z\ge2\sqrt{xz}\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{x^2y^2z^2}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left|x\right|\left|y\right|\left|z\right|\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)