Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2+12y^2+2x^2+18z^2+4y^2+9z^2\)
\(\Rightarrow A\ge2\sqrt{3x^2.12y^2}+2\sqrt{2x^2.18z^2}+2\sqrt{4y^2.9z^2}\)
\(\Rightarrow A\ge12xy+12xz+12yz=12\left(xy+xz+yz\right)=12\)
\(\Rightarrow A_{min}=12\) khi \(\left[{}\begin{matrix}x=2y=3z=1\\x=2y=3z=-1\end{matrix}\right.\)
Áp dụng BĐT AM-GM ta có:
\(x^2\cdot\dfrac{4}{9}+y^2\cdot\dfrac{4}{9}\ge\dfrac{8xy}{9}\)
\(x^2\cdot\left(\dfrac{4}{3}\right)^2+z^2\cdot\left(\dfrac{1}{3}\right)^2\ge\dfrac{8xz}{9}\)
\(y^2\cdot\left(\dfrac{4}{3}\right)^2+z^2\cdot\left(\dfrac{1}{3}\right)^2\ge\dfrac{8yz}{9}\)
CỘng theo vế 3 BĐt trên ta có:
\(\dfrac{2}{9}\left(10x^2+10y^2+z^2\right)\ge\dfrac{8\left(xy+yz+xz\right)}{9}\)
\(\Leftrightarrow10x^2+10y^2+z^2\ge4\left(xy+yz+xz\right)=4\)
áp dụngBĐT cô si ta có
\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x
\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y
\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z
khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)
áp dụng BĐT cô si
x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3
do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\) (đpcm)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{2}{2xy+2yz+2xz}\)
Theo Bất đẳng thức Cauchy Schwarz dạng Engel ta được :
\(\frac{1}{x^2+y^2+z^2}+\frac{\sqrt{2}^2}{2xy+2yz+2xz}\ge\frac{\left(1+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}\)
\(\ge\frac{1+2\sqrt{2}+2}{1^2}=3+2\sqrt{2}\)
Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}...\\...\\...\end{cases}}\)
Vậy \(Min_P=3+2\sqrt{2}\)khi và chỉ khi ...
dấu = bạn tự xét nhé :V
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)