Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+z=1/x+1/y+1/z
<=>x+y+z=(xy+yz+xz)/xyz(bạn tự quy đồng nha)
<=.x+y+z=xy+yz+xz
ta có
xyz-(x+y+z)+(xy+yz+xz)-1=0
(xyz-xz-yz+z)-(xy-x-y+1)=0
z(xy-x-y+1)-(xy-x-y+1)=0
(xy-x-y+1)(z-1)=0
(x(y-1)-(y-1))(z-1)=0
(x-1)(y-1)(z-1)=0
- x-1=0=>x=1
- y-1=0=>y=1
- z-1=0=>z=1
cậu tự xét từng trường hợp nha
Ta có:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\) \(x+y+z=\frac{xy+yz+xz}{xyz}\)
\(\Leftrightarrow\) \(x+y+z=xy+yz+xz\) ( do \(xyz=1\) )
\(\Leftrightarrow\) \(x+y+z-xy-yz-xz=0\)
\(\Leftrightarrow\) \(xyz-xy-yz-xz+x+y+z-1=0\)
\(\Leftrightarrow\) \(xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+z-1=0\)
\(\Leftrightarrow\) \(\left(z-1\right)\left(xy-y-x+1\right)=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow\) \(x=1\) hoặc \(y=1\) hoặc \(z=1\)
+) Với \(x=1\) thì \(P=\left(1^{19}-1\right)\left(y^5-1\right)\left(z^{1896}-1\right)=0\)
Tương tự với \(y=1\) \(;\) \(z=1\) , ta cũng có \(P=0\)
Ta có:
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)
Ta lại có:
\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)
Đặt \(\left\{{}\begin{matrix}xy=a\\yz=b\\zx=c\end{matrix}\right.\)
Giả thiết \(\Leftrightarrow a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
+) TH1: \(a+b+c=0\Leftrightarrow xy+yz+zx=0\)
Biến đổi linh tinh P chắc là ra :D
+) TH2: \(a=b=c\Leftrightarrow xy=yz=zx\Leftrightarrow x=y=z\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}=\frac{2y}{y}\cdot\frac{2z}{z}\cdot\frac{2x}{x}=2\cdot2\cdot2=8\)
Vậy....
TH1: \(xy+yz+zx=0\)
\(\Leftrightarrow z\left(x+y\right)=-xy\)
\(\Leftrightarrow x+y=\frac{-xy}{z}\)
Vì vai trò của x, y, z là như nhau nên ta cũng có :
\(\left\{{}\begin{matrix}y+z=\frac{-yz}{x}\\z+x=\frac{-zx}{y}\end{matrix}\right.\)
Ta có \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)
\(P=\frac{\frac{-xy}{z}\cdot\frac{-yz}{x}\cdot\frac{-zx}{y}}{xyz}\)
\(P=\frac{\frac{-x^2y^2z^2}{xyz}}{xyz}\)
\(P=\frac{-xyz}{xyz}=-1\)
Vậy....
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\)
\(\Rightarrow xy+yz+xz=0\)
Ta có : \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Rightarrow A=x^2+y^2+z^2=0\)
ta co :
a+b+c=bc+ac+ab/abc =a+b+c=bc+ac+ab (vi abc=1)
ta co : (a-1).(b-1).(c-1) =(ab-a-b+1).(c-1) =abc-ab-ac+a-bc+b+c-1 =(abc-1)+(a+b+c)-(ab+ac+bc) =(1-1)+(bc+ac+ab)-(ab+ac+bc) =0
do (a-1).(b-1).(c-1)=0 (cmt) =>a=b=c=1 thay vao p =>p=(1^19-1).(1^5-1).(1^1890-1) =(1-1).(1-1).(1-1) 0
Nhanh vậy ta:
chơi khác kiểu không trùng ai hết.
câu 1
\(P=\frac{1}{x^2}+\frac{1}{y^2}=\frac{y^2+x^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\)(1)
Ta lại có:
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{20}{2}=10\)(2) Đẳng thức khi x=y
Từ (1) và (2) \(\Rightarrow P_{min}=\frac{20}{100}=\frac{1}{5}\) Khi x=y=\(\sqrt{10}\)
câu 2: Không cần đk (x+y+z)=1
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) (1) =>Dk \(\hept{\begin{cases}x+z\ne0\\y+z\ne0\\x+y\ne0\end{cases}\Rightarrow\left(x+y+z\right)\ne0}\)
Nhân hai vế (1) với (x+y+z khác 0)
\(\Leftrightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=1.\left(x+y+z\right)\)
\(\Leftrightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)
\(\Rightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=0\)
Câu 1:
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:
\(P=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=20\\x=y\end{cases}}\Rightarrow x=y=\sqrt{10}\)
Vậy MinP=\(\frac{1}{5}\Leftrightarrow x=y=\sqrt{10}\)
Câu 2:
Từ \(x+y+z=1\Rightarrow\hept{\begin{cases}x=1-\left(y+z\right)\\y=1-\left(x+z\right)\\z=1-\left(x+y\right)\end{cases}}\).Thay vào ta có
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)
\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-x+\frac{y}{x+z}-y+\frac{z}{x+y}-z\)
\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)=1-1=0\)
\(x+y+z=7\Rightarrow z=7-x-y\Rightarrow xy+z-6=xy+7-x-y-6=xy-x-y+1\)
\(=\left(x-1\right)\left(y-1\right)\)
Tương tự: \(yz+x-6=\left(y-1\right)\left(z-1\right);zx+y-6=\left(z-1\right)\left(x-1\right)\)
Viết lại: \(H=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x-1+y-1+z-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-\left(xy+yz+zx\right)+x+y+z-1}\)
\(=\frac{7-3}{3-13+7-1}=-1\)(Từ gt tính được \(xy+yz+zx=13\))
Ta có :
\(xy+yz+zx\)= \(\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}\)= \(\frac{7^2-23}{2}\)= \(13\)
Ta lại có :
\(xy+z-6=xy+z+1-x-y-z\)= \(\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\)\(\frac{1}{\left(x-1\right)\left(y-1\right)}\)\(+\)\(\frac{1}{\left(y-1\right)\left(z-1\right)}\)\(+\)\(\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\)\(\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}\)
\(=-1\)
tick cho tau hết rôi tau bày mã bảo vệ cho