Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x,y,z) =\(\left(x^2+9z^2-6xz\right)+\left(y^2+4z^2-4yz\right)+\left(x^2-6x+9\right)\)
\(f\left(x,y,z\right)=\left(x-3z\right)^2+\left(y-2z\right)^2+\left(x-3\right)^2\)
\(f\left(x,y,z\right)\ge0\forall x,y,z\in R\)
\(f\left(x,y,z\right)=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-3z=0\\y-2z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=3z\\y=2z\end{matrix}\right.\\xy=6z^2\\x^2=9z^2\\y^2=4z^2\end{matrix}\right.\)
\(A=\dfrac{2xy+xz-x^2-2y^2-yz}{x^2-y^2}=\dfrac{12z^2+3z^2-9z^2-8z^2-2z^2}{9z^2-4z^2}=\dfrac{-4z^2}{5z^2}=-\dfrac{4}{5}\)
\(2x^2+y^2+13z^2-4yz-6x+9=0\)
\(\Leftrightarrow\left(2x^2-6x+\dfrac{9}{2}\right)+\left(y^2-4yz+4z^2\right)+9z^2+\dfrac{9}{2}=0\)
\(\Leftrightarrow2\left(x^2-3x-\dfrac{9}{4}\right)+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)
\(\Leftrightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)
Dễ thấy: \(2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2\ge0\forall x,y,z\)
\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x,y,z\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}2\left(x-\dfrac{3}{2}\right)^2=0\\\left(y-2z\right)^2=0\\9z^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{3}{2}=0\\y=2z\\z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\\z=0\end{matrix}\right.\)
Khi đó \(P=\dfrac{2\cdot\dfrac{3}{2}\cdot0+\dfrac{3}{2}\cdot0-\left(\dfrac{3}{2}\right)^2-2\cdot0^2-0\cdot0}{\left(\dfrac{3}{2}\right)^2-0^2}=-1\)
Đệch, theo đề bài của bn thì Thắng làm đúng òi
Hình như đề thiếu -6xz mới ra -4/5
- x.y=-2; xz=3 =>x2yz=-2.3=-6
=>x2=\(\frac{-6}{yz}\) = -6/-4=2/3
- xz=3;yz=-4 => z2xy=3.-4=-12
=> z2=-12/xy=-12/-2=6
- xy=-2;yz=-4=>y2xz=-2.-4=8
=>y^2=8/xz=8/-4=-2
====>x2+y2+z2=2/3+6-2=14/3
Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.
P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4
P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8
P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8
P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2
P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2
P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8
P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8
MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8
Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4
Min (xy + 1)2(xy – 1)2 = 0 =>
TH1: xy = -1 (không có x,y thỏa mãn)
TH2: xy = 1 => x = y = 1 => Min P = – 4
Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)
Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.
Mình biết hơi muộn
\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)
\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)
\(\Rightarrow-1\le x+y+3\le1\) .
\(\Rightarrow2012\le x+y+3+2013\le2014\)
\(\Rightarrow2012\le B\le2014\)