\(\g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

\(VT-VP=\left(x+y\right)^2\left(y+z\right)^2-4\left(x+y+z\right)xyz\)

$=(xy - xz + y^2 + yz)^2 \geq 0$

29 tháng 1 2019

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\) (áp dụng svacxo)

Áp dụng bđt phụ \(a^2+b^2+c^2\ge ab+bc+ca\)

=>\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2+y^2+z^2=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\sqrt{\frac{1}{3}}}\)

31 tháng 8 2019

Cách 2:

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)

Tương tự hai bđt còn lại , cộng theo vế:

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge x^2+y^2+z^2=1\)(đpcm)

Cách 3:

\(\frac{x^3}{y}+\frac{x^3}{y}+y^2\ge3\sqrt[3]{\frac{x^3}{y}.\frac{x^3}{y}.y^2}=3x^2\)

Hay \(\frac{2x^3}{y}\ge3x^2-y^2\)

Tương tự 2 BĐT còn lại rồi cộng theo vế rồi chia cho 2 thu được đpcm

Cách 4:

\(\frac{x^3}{y}+\frac{x^3}{y}+xy+xy\ge4\sqrt[4]{x^8}=4x^2\)

Hay \(\frac{2x^3}{y}\ge4x^2-2xy\). Tương tự hai BĐT còn lại và cộng theo vế rồi làm nốt:v

P/s: Lời giải trên dùng kỹ thuật ghép cặp, một kĩ thuật rất gây ức chế cho em vì nhiều khi nghĩ không ra cần ghép với số nào:v

24 tháng 8 2017

3

k nha

31 tháng 8 2017

bang x

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Nếu bổ sung điều kiện $x,y,z$ không âm thì có thể giải như sau:

$(x-1)^3=x^3-3x^2+3x-1=x(x^2-3x+\frac{9}{4})+\frac{3}{4}x-1$

$=x(x-\frac{3}{2})^2+\frac{3}{4}x-1$

$\geq \frac{3}{4}x-1$

Hoàn toàn tương tự với phần còn lại và cộng theo vế:

$(x-1)^3+(y-1)^3+(z-1)^3\geq \frac{3}{4}(x+y+z)-3=\frac{9}{4}-3=\frac{-3}{4}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

BĐT sai với $x=-9; y=6; z=6$

27 tháng 10 2019

Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok! 

Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)

\(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)

\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)

P/s: Lâu ko làm nên cũng ko chắc đâu nhé!

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

5 tháng 6 2019

x3 + y3 = 2 ( z3 + t3 )

\(\Rightarrow\)x3 + y3 + z3 + t3 = 3 ( z3 + t3 )   \(⋮\)

Áp dụng bài toán : n \(\in\)Z thì n3 - n \(⋮\)3

Ta có : ( x3 - x ) + ( y3 - y ) + ( z3 - z ) + ( t3 - t ) \(⋮\)

hay ( x3 + y3 + z3 + t3 ) - ( x + y + z + t ) \(⋮\)3

Mà x3 + y3 + z3 + t3 \(⋮\)3 nên x + y + z + t \(⋮\)3

5 tháng 6 2019

thank you