K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BT
10 tháng 3 2018
Cách 1:
Áp dụng tính chất cuẩ BĐT, Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
=> \(x^4+y^4+z^4\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{16}{27}\)
=> GTNN của \(x^4+y^4+z^4=\frac{16}{27}\) đạt được khi x=y=z=2/3
22 tháng 5 2018
ê hiếu t có 1 cách nhưng mà bị ngược dấu :)) có cần t làm ko :))))
30 tháng 8 2021
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
B
0
- Áp dụng bất đẳng thức cô - si ta được :
\(\frac{x^4}{4}\ge\sqrt[4]{x^4}\) => \(x^4\ge4x\)
\(\frac{y^4}{4}\ge\sqrt[4]{y^4}\)=> \(y^4\ge4y\)
\(\frac{z^4}{4}\ge\sqrt[4]{z^4}\)=> \(z^4\ge4z\)
- Cộng 3 vế bất đẳng thức trên ta được :
\(x^4+y^4+z^4\ge4\left(x+y+z\right)\)
=> \(x^4+y^4+z^4\ge8\)
Vậy GTNN của biểu thức trên là 8 .
Dấu "=" xảy ra <=> x = y = z = 1 .
à đó là căn bậc 4