\(\dfrac{1}{2x+y+6}+\dfrac{1}{2y+z+6}+\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2018

Lời giải:

\(\frac{1}{2x+y+6}+\frac{1}{2y+z+6}+\frac{1}{2z+x+6}\leq \frac{1}{4}\)

\(\Leftrightarrow \frac{6}{2x+y+6}+\frac{6}{2y+z+6}+\frac{6}{2z+x+6}\leq \frac{3}{2}\)

\(\Leftrightarrow 1-\frac{2x+y}{2x+y+6}+1-\frac{2y+z}{2y+z+6}+1-\frac{2z+x}{2z+x+6}\leq \frac{1}{4}\)

\(\Leftrightarrow A=\frac{2x+y}{2x+y+6}+\frac{2y+z}{2y+z+6}+\frac{2z+x}{2z+x+6}\geq \frac{3}{2}\)

-----------------------

Thật vậy. Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{(2x+y)^2}{(2x+y)(2x+y+6)}+\frac{(2y+z)^2}{(2y+z)(2y+z+6)}+\frac{(2z+x)^2}{(2z+x)(2z+x+6)}\)

\(\geq \frac{(2x+y+2y+z+2z+x)^2}{ (2x+y)(2x+y+6)+(2y+z)(2y+z+6)+(2z+x)(2z+x+6)}\)

\(\Leftrightarrow A\geq \frac{9(x+y+z)^2}{5(x^2+y^2+z^2)+4(xy+yz+xz)+18(x+y+z)}\)

Ta sẽ cm \( \frac{9(x+y+z)^2}{5(x^2+y^2+z^2)+4(xy+yz+xz)+18(x+y+z)}\geq \frac{3}{2}\)

\(\Leftrightarrow \frac{3(x+y+z)^2}{5(x^2+y^2+z^2)+4(xy+yz+xz)+18(x+y+z)}\geq \frac{1}{2}\)

\(\Leftrightarrow x^2+y^2+z^2+8(xy+yz+xz)\geq 18(x+y+z)\)

\(\Leftrightarrow (x+y+z)^2+6(xy+yz+xz)\geq 18(x+y+z)(*)\)

Theo BĐT AM-GM: \((xy+yz+xz)^2\geq 3xyz(x+y+z)\)

\(\Leftrightarrow (xy+yz+xz)^2\geq 24xyz\Rightarrow xy+yz+xz\geq 2\sqrt{6(x+y+z)}\)

Đặt \(\sqrt{6(x+y+z)}=t\)

Có \((x+y+z)^2+6(xy+yz+xz)\geq \frac{t^4}{36}+12t\geq 18.\frac{t^2}{6}\)

\(\Leftrightarrow \frac{t^3}{36}+12\geq 3t\)

\(\Leftrightarrow t^3-108t+432\geq 0\)

\(\Leftrightarrow (t-6)^2(t+12)\geq 0\) (luôn đúng với mọi \(t\geq 0\) )

Do đó ta có \((*)\), từ \((*)\Rightarrow A\geq \frac{3}{2}\). CM kết thúc

Dấu bằng xảy ra khi \(x=y=z=2\)

31 tháng 1 2018

or cách khác

https://olm.vn/hoi-dap/question/1148838.html

31 tháng 1 2018

Đặt \(x=2a;y=2b;z=2c\)

Thì ta có: \(\sqrt{abc}=1\)

Ta có: \(\frac{1}{\sqrt{a}+\sqrt{ab}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ca}+1}=1\)

Ta cần chứng minh:

\(\frac{1}{2}\left(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\right)\le\frac{1}{4}\)

Ta có:

\(VT\le\frac{1}{2}\left(\frac{1}{2\sqrt{a}+2\sqrt{ab}+2}+\frac{1}{2\sqrt{b}+2\sqrt{bc}+2}+\frac{1}{2\sqrt{c}+2\sqrt{ca}+2}\right)\)

\(=\frac{1}{4}\)

31 tháng 1 2018

alibaba nguyễn: tớ có 1 khúc mắc là vì sao lại có thể đưa ra dòng thứ 3 (từ trên xuống dưới)

10 tháng 11 2017

Ta có :

\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)

\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

tương tự với hai ông còn lại sau đó cộng lại ta được:

\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 1:

\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )

Khi đó:

\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)

\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)

(Áp dụng BĐT Cauchy_Schwarz)

Theo BĐT Cauchy dễ thấy:

\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 2:

Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)

Ta có:

\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)

\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)

Áp dụng BĐT Cauchy:

\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)

\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)

\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)

Nhân theo vế:

\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)

\(\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

5 tháng 12 2018

Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)

CMTT và cộng theo vế:

\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)

\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)

\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)

Cộng theo vế:

\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2018

Bạn xem tại đây :

Câu hỏi của Dương Thị Thu Ngọc - Toán lớp 9 | Học trực tuyến

NV
26 tháng 2 2019

\(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=2\)

Lại có \(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

Tương tự \(\dfrac{1}{x+2y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

Cộng vế với vế: \(P\le\dfrac{1}{2}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{1}{2}.2=1\)

\(\Rightarrow P_{max}=1\) khi \(x=y=z=\dfrac{3}{4}\)

5 tháng 1 2018

Ta có: \(\dfrac{1}{1+x}\ge2-\dfrac{1}{1+y}-\dfrac{1}{1+z}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}\)

\(=\dfrac{y}{1+y}+\dfrac{z}{1+z}=2\sqrt{\dfrac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự vs 2 bđt còn lại: \(\left\{{}\begin{matrix}\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}}\\\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\end{matrix}\right.\)

Nhân các vế của 3 bđt trên => ĐPCM

6 tháng 1 2018

dấu = cuối ở phần biến đổi 1/1+x sửa thành \(\ge\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2018

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)

\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)

Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)

\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)

Hoàn toàn tương tự:

\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)

Cộng theo vế các BĐT đã thu được ta có:

\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)

\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=3\)