\(\ge2\left(\sqrt{xy}+\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

Theo giả thiết: \(xyz=x+y+z+2\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\)\(=\left(xy+yz+zx\right)+2\left(x+y+z\right)+3\)

\(\Leftrightarrow\left(xy+x+y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\). Đặt \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

Khi đó a + b + c = 1 và \(x=\frac{1-a}{a}=\frac{b+c}{a}\);\(y=\frac{1-b}{b}=\frac{c+a}{b}\);\(z=\frac{1-c}{c}=\frac{a+b}{c}\)

Ta cần chứng minh \(x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2-\left(x+y+z\right)\)

\(\Leftrightarrow\sqrt{2\left(x+y+z+3\right)}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{2\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)\(\ge\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\)

BĐT cuối hiển nhiên đúng vì đây là BĐT Bunyakovski do đó bài toán được chứng minh.

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)hay x = y = z = 2

AH
Akai Haruma
Giáo viên
18 tháng 1 2020

Bạn có thể tham khảo lời giải tại đây:

Câu hỏi của Toán Chuyên Học - Toán lớp 9 | Học trực tuyến

10 tháng 3 2020

Thay \(xy+yz+zx=5\) vào P, ta có:

\(P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Áp dụng bất đẳng thức Cô-si, ta có:

\(\sqrt{6\left(x+y\right)\left(x+z\right)}\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}\)

\(\sqrt{6\left(y+z\right)\left(y+x\right)}\le\frac{3\left(y+x\right)+2\left(y+z\right)}{2}\)

\(\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{\left(z+x\right)+\left(z+y\right)}{2}\)

Cộng vế theo vế các bất đẳng thức cùng chiều, ta đươc:

\(\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{9}{2}x+\frac{9}{2}y+3z\)

\(\Rightarrow P\ge\frac{3x+3y+2z}{\frac{9}{2}x+\frac{9}{2}y+3z}=\frac{3x+3y+2z}{\frac{3}{2}\left(3x+3y+2z\right)}=\frac{2}{3}\)

Dấu "=" khi \(\hept{\begin{cases}3\left(x+y\right)=2\left(y+z\right)=2\left(z+x\right)\\z+y=z+x\\xy+yz+zx=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}}\)

6 tháng 4 2019

Cm cái gì vậy bn. Thiếu đề òi

chứng minh \(\ge\)\(\sqrt{5}\)mk viết thiếu mất nha

2 tháng 4 2021

Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)

Ta có:

\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)

\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)

\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:

\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)

Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)

Từ (1), (2) và (3), ta được:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)

 \(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)

Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).

\(\)

1 tháng 8 2017

Thay  \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)  ta có

\(1+x=x+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\)

Tương tự  \(1+y=\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}+\sqrt{z}\right)\)  và  \(1+z=\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)

và  \(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\)

\(=\frac{\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{z}\right)}+\frac{\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)}+\frac{\sqrt{z}}{\left(\sqrt{z}+\sqrt{x}\right)\left(\sqrt{z}+\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)+\sqrt{y}\left(\sqrt{z}+\sqrt{x}\right)+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=\frac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

\(=\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)}\)

Do đó P = 2

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Từ điều kiện \(x+y+z+2=xyz\) ta có một đẳng thức rất đẹp là \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

\(\Rightarrow \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2(*)\)

(lớp 9 mình đã rất sung sướng khi phát hiện ra nó, dù không mới mẻ. Tất nhiên không thể tự nhiên mà có được đẳng thức như thế này, nó tùy thuộc vào khả năng suy luận ngược hoặc thói quen biến đổi các đẳng thức cơ bản)

Khi đó, áp dụng BĐT Bunhiacopxky ta có:

\((x+1+y+1+z+1)\left(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\right)\geq (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow 2(x+y+z+3)\ge (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow x+y+z+6\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)

Ta có đpcm.

Dấu "=" xảy ra khi \(x=y=z=2\)