K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)

Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)

\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)

Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)

Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng

Như vậy (3),(4) đúng => (2) đúng

Từ đó suy ra \(T\ge\frac{4}{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)

15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)

15 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)

19 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2

≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2 

=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2 

≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82

Dấu "=" xảy ra khi: x=y=z=13 

4 tháng 12 2019

Áp dụng bất đẳng thức Cauchy 

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)

\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)

Áp dụng BĐT Cauchy - Schwarz :

\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

7 tháng 5 2020

Áp dụng BĐT Cauchy schwarz ta có:

\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)

\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)

Đẳng thức xảy ra tại x=y=z=1/3

19 tháng 8 2020

Bài này có cách lập bảng biến thiên,nhưng mình sẽ làm cách đơn giản

Từ giả thiết \(x^2+y^2+z^2=1\Rightarrow0< x,y,z< 1\)

Áp dụng Bất Đẳng Thức Cosi cho 3 cặp số dương \(2x^2;1-x^2;1-x^2\)

\(\frac{2x^2+\left(1-x^2\right)+\left(1-x^2\right)}{3}\ge\sqrt[3]{2x^2\left(1-x^2\right)^2}\le\frac{2}{3}\)

\(\Leftrightarrow x\left(1-x^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\Leftrightarrow\frac{x}{y^2+z^2}\ge\frac{3\sqrt{3}}{2}x^2\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{y}{z^2+x^2}\ge\frac{3\sqrt{3}}{2}y^2\left(2\right)\\\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}z^2\left(3\right)\end{cases}}\)

Cộng các vế (1), (2) và (3) ta được \(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{3}}{3}\)

11 tháng 4 2016

Áp dụng bất đăng thức Cauchy : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên \(P\ge\frac{3}{\sqrt[3]{xyz}}+2xyz\). Đẳng thức khi : x=y=z

Đặt \(t=\sqrt[3]{xyz}\)

Cũng theo Cauchy : \(1=x^2+y^2+z^2\ge3\sqrt{x^2y^2z^2}\). Đẳng thức khi x=y=z

Nên ta có 0<t\(\le\frac{\sqrt{3}}{3}\)

Xét hàm số \(f\left(t\right)=\frac{3}{t}+2t^3\) với  0<t\(\le\frac{\sqrt{3}}{3}\)

Tính \(f'\left(t\right)=-\frac{3}{t^2}+6t^2=\frac{3\left(2t^2-1\right)}{t^2}\)

Lập bảng biến thiên của f(t) rồi chỉ ra : \(f\left(t\right)\ge\frac{29\sqrt{3}}{9}\) với mọi t\(\in\left(0;\frac{\sqrt{3}}{3}\right)\)

Từ đó \(P\ge\frac{29\sqrt{3}}{9}\)

Giá trị nhỏ nhất của P là \(\frac{29\sqrt{3}}{9}\) đạt được khi \(x=y=z=\frac{\sqrt{3}}{3}\)

 
10 tháng 12 2017

cd đúng ko

NV
14 tháng 5 2020

\(H=\sum\frac{y}{x^2+1+2y+2}\le\sum\frac{y}{2x+2y+2}=\frac{1}{2}\sum\frac{y}{x+y+1}\)

Ta sẽ chứng minh \(H\le\frac{1}{2}\) hay \(\frac{y}{x+y+1}+\frac{z}{y+z+1}+\frac{x}{z+x+1}\le1\)

\(\Leftrightarrow\frac{x+1}{x+y+1}+\frac{y+1}{y+z+1}+\frac{z+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x+y+1\right)}+\frac{\left(y+1\right)^2}{\left(y+1\right)\left(y+z+1\right)}+\frac{\left(z+1\right)^2}{\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\left(x+1\right)\left(x+y+1\right)+\left(y+1\right)\left(y+z+1\right)+\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{x^2+y^2+z^2+xy+yz+zx+3x+3y+3z+3}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x^2+y^2+z^2\right)+xy+yz+zx+3x+3y+3z+3+\frac{1}{2}\left(x^2+y^2+z^2\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+3+\frac{3}{2}}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+\frac{9}{2}}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z+3\right)^2}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2020

Ta có:

\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{x+2z}{x+z}=\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{z}{x+z}+1\)

\(=\frac{1}{\frac{y^2}{xz}+\frac{y}{x}}+\frac{1}{\frac{xz}{y^2}+\frac{z}{y}}+\frac{1}{\frac{x}{z}+1}+1\)

Đặt \((\frac{x}{y}, \frac{y}{z})=(a,b)\Rightarrow ab=\frac{x}{z}\geq 1\) do $x\ge z$

Bài toán trở thành: Cho 2 số dương $a,b$ thỏa mãn $ab\geq 1$. Tìm min của

\(P=\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}+1=\frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{ab+1}+1\)

Có: \(P+1=\frac{a+b+1}{b+1}+\frac{b+a+1}{a+1}+\frac{1}{ab+1}\). Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:

\(P+1\geq (a+b+1).\frac{4}{b+1+a+1}+\frac{1}{(\frac{a+b}{2})^2+1}=\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}(1)\)

Đặt \(t=a+b\). Theo BĐT AM-GM \(t=a+b\geq 2\sqrt{ab}\geq 2\sqrt{1}=2\)

Xét hiệu:

\(\frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}-\frac{7}{2}=\frac{4(t+1)}{t+2}+\frac{4}{t^2+4}-\frac{7}{2}\)

\(=\frac{t^3-6t^2+12t-8}{2(t+2)(t^2+4)}=\frac{(t-2)^3}{2(t+2)(t^2+4)}\geq 0, \forall t\geq 2\)

\(\Rightarrow \frac{4(a+b+1)}{a+b+2}+\frac{4}{(a+b)^2+4}\geq \frac{7}{2}(2)\)

Từ \((1);(2)\Rightarrow P+1\geq \frac{7}{2}\Rightarrow P\geq \frac{5}{2}\)

Vậy $P_{\min}=\frac{5}{2}$

Dấu "=" xảy ra khi $x=y=z$

27 tháng 2 2020

@Akai Haruma