Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
x + y \(\ge\)xy(4 - x - y)
<=> x + y + xy2 + yx2 - 4xy \(\ge0\)
<=> \(\left(x-2xy+xy^2\right)+\left(y-2xy+yx^2\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-y\sqrt{x}\right)^2+\left(\sqrt{y}-x\sqrt{y}\right)^2\ge0\)
=> ĐPCM
ta có \(\sum\) \(a+\frac{9}{16}a^2\ge\frac{3}{2}\sqrt{a^3}\)
\(\Rightarrow\)\(\sum\) \(a\ge\frac{3}{2}\sqrt{a^3}-\frac{9}{16}a^2\)\(\Rightarrow a+b+c\ge\frac{3}{2}(\sqrt{a^3}+\sqrt{b^3}+\sqrt{c^3})-\frac{9}{16}(a^2+b^2+c^2)\ge\frac{9}{2}\sqrt{abc}-\frac{9}{16}.4\sqrt{abc}\)>\(2\sqrt{abc}\) theo bđt côsi
ĐPCM
có thể cảm ơn tôi tại đây https://diendantoanhoc.net/members/
Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\); \(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
<=>27xyz=27(x+y+z)+54
\(\Rightarrow\left(x+y+z\right)^3\ge27\left(x+y+z\right)+54\Rightarrow x+y+z\le6\)
\(4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le12\left(x+y+z\right)=9\left(x+y+z\right)+3\left(x+y+z\right)\le9\left(x+y+z\right)+18=9\left(x+y+z+2\right)\)
\(\Rightarrow4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le9xyz\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\left(Q.E.D\right)\)
Từ giả thiết ta đặt ra: \(x+y+z=xyz\Rightarrow xy+yz+zx\ge\sqrt{3}a+b+c\ge9\) *
Ta lại có: \(x^2+5\ge5\sqrt{xyz}\)theo BĐT Cauchy
Từ đó BĐT \(\Leftrightarrow x^2+y^2+z^2+27\le4xy+yz+zx\Leftrightarrow a+b+c+27\le6\)
Đặt: \(\hept{\begin{cases}p=x+y+z\\q=xy+yz+zx\\r=xyz\end{cases}}\)
Thì ta có: \(p=r\)và cần chứng minh
\(6q\ge p^2+27\Leftrightarrow6pr\ge p^3+27p\)
Theo BĐT Schur thì: \(r\ge\frac{4pq-p^3}{9}\)
Do đó: \(BĐT\Leftrightarrow\frac{8}{3}q^2\ge\frac{3}{2}p^2+27\)
BĐT cuối cùng đúng theo Đk *
P/s: Tham khảo nhé
Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)
Ta có:
\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)
\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)
\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)
Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:
\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)
\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)
Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)
Chứng minh tương tự, ta được:
\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)
Từ (1), (2) và (3), ta được:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)
Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).
\(\)
Vì x,y,z dương nên xyz dương
nên chia cả hai vế của bđt ta được bđt \(\frac{x+y}{xyz}\ge1\)và ta cần chứng minh bđt này đúng thì bđt ban đầu được chứng minh
Ta có \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)( Cauchy-Schwarz dạng Engel ) (*)
Lại có \(z\left(x+y\right)\le\left(\frac{z+x+y}{2}\right)^2=2^2=4\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{4}=1\)( AM-GM ) (**)
Từ (*) và (**) => \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge1\)( đpcm )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y,z>0\\x+y+z=4\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)