Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
\(\Leftrightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)-\left(z+x\right)}{ab-ac}=\dfrac{y-z}{a\left(b-c\right)}\)
\(\Leftrightarrow\dfrac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{\left(z+x\right)-\left(y+z\right)}{ac-bc}=\dfrac{x-y}{c\left(a-b\right)}\)
\(\Rightarrow\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\left(đpcm\right)\)
TH1 : \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(\Leftrightarrow M=\dfrac{\left(-z\right)\left(-x\right)\left(-y\right)}{8xyz}=\dfrac{-\left(xyz\right)}{8xyz}=\dfrac{-1}{8}\)
Th2 : \(x+y+z\ne0\)
\(\dfrac{2x+2y-z}{z}=\dfrac{2x-2z+y}{y}=\dfrac{2y+2z-x}{x}\)
\(\Leftrightarrow\left(\dfrac{2x+2y-z}{z}+3\right)=\left(\dfrac{2x-2z+y}{y}+3\right)=\left(\dfrac{2y+2z-x}{x}+3\right)\)
\(\Leftrightarrow\dfrac{2x+2y+2z}{z}=\dfrac{2x+2y+2z}{y}=\dfrac{2x+2y+2z}{x}\)
\(\Leftrightarrow x=y=z\)
\(\Leftrightarrow M=\dfrac{2x.2y.2z}{8xyz}=1\)
Vậy \(\left[{}\begin{matrix}M=\dfrac{-1}{8}\Leftrightarrow x+y+z=0\\M=1\Leftrightarrow x+y+z\ne0\end{matrix}\right.\)
Câu b mình vừa làm rồi
a)
Áp dụng bđt Cauchy-Scharz:
\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\)
\(=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(x+y\right)+\left(y+z\right)}+\dfrac{z}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)
\(=\dfrac{1}{4}.3=\dfrac{3}{4}\)
Dấu "=" khi \(x=y=z\)
Em ko nhớ là lớp 7 có học Cô-si nên chị đừng giải theo cách đó
Ta có:
\(\dfrac{a.\left(x+z\right)}{abc}=\dfrac{b.\left(z+x\right)}{abc}=\dfrac{c.\left(x+y\right)}{abc}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{z+x-\left(y+z\right)}{ac-bc}=\dfrac{x-y}{c.\left(a-b\right)}\left(1\right)\)
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{y+z-\left(x+y\right)}{bc-ab}=\dfrac{z-x}{b.\left(c-a\right)}\left(2\right)\)
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{x+y-\left(z+x\right)}{ab-ac}=\dfrac{y-z}{a.\left(b-c\right)}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra:
\(\dfrac{y-z}{a.\left(b-c\right)}=\dfrac{z-x}{b.\left(c-a\right)}=\dfrac{x-y}{c.\left(a-b\right)}\)
Ta có :
\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\dfrac{z+x}{a}=\dfrac{y+x}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{z+x}{a}=\dfrac{y+x}{b}=\dfrac{z+x-y-x}{a-b}=\dfrac{x-y}{a-b}\)
\(\Leftrightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{z+x}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\left(1\right)\)
Ta lại có :
\(b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\dfrac{z+x}{b}=\dfrac{x+y}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{z+x}{b}=\dfrac{x+y}{c}=\dfrac{z+x-x-y}{b-c}=\dfrac{y-y}{b-c}\)
\(\Leftrightarrow\dfrac{z+x}{b}.\dfrac{1}{a}=\dfrac{x+y}{c}.\dfrac{1}{a}=\dfrac{y-x}{a\left(c-b\right)}\left(2\right)\)
Lại có :
\(a\left(y+z\right)=c\left(x+y\right)\)
\(\Leftrightarrow\dfrac{y+z}{a}=\dfrac{x+y}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{y+z}{a}=\dfrac{x+y}{c}=\dfrac{y+z-x-y}{a-c}=\dfrac{z-x}{a-c}\)
\(\Leftrightarrow\dfrac{y+z}{a}.\dfrac{1}{b}=\dfrac{x+y}{c}.\dfrac{1}{b}=\dfrac{z-x}{b\left(c-a\right)}\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrowđpcm\)
Đề nhảm.a;b;c ở đâu bạn -_-
a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(\left\{{}\begin{matrix}\dfrac{x}{2x+y+z}=\dfrac{x}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\\\dfrac{y}{2y+x+z}=\dfrac{y}{x+y+y+z}\le\dfrac{1}{4}\left(\dfrac{y}{x+y}+\dfrac{y}{y+z}\right)\\\dfrac{z}{2z+x+y}=\dfrac{z}{x+z+y+z}\le\dfrac{1}{4}\left(\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\end{matrix}\right.\)
Cộng theo vế:
\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{y+z}+\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z>0\)
b) Áp dụng bất đẳng thức AM-GM:
\(\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le\dfrac{\left(a+b-c+a-b+c\right)^2}{4}=\dfrac{4a^2}{4}=a^2\\\left(a-b+c\right)\left(-a+b+c\right)\le\dfrac{\left(a-b+c-a+b+c\right)^2}{4}=\dfrac{4c^2}{4}=c^2\\\left(a+b-c\right)\left(-a+b+c\right)\le\dfrac{\left(a+b-c-a+b+c\right)^2}{4}=\dfrac{4b^2}{4}=b^2\end{matrix}\right.\)
Nhân theo vế: \(\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)
Dấu "=" xảy ra khi: \(a=b=c>0\)
Phải chứng minh BĐT trung gian: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\forall\) a,b trước khi áp dụng chứ.