Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(VT\ge\dfrac{\left(X+Y+Z\right)^2}{2\left(X+Y+Z\right)}=\dfrac{X+Y+Z}{2}\left(đpcm\right)\)
Theo BĐT Cô-si dưới dạng engel ta có :
\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{4}{4}=1\)
Dấu \("="\) xảy ra khi \(x=y=z=\dfrac{2}{3}\)
Cách khác :
\(\dfrac{x^2}{x+y}+\dfrac{x+y}{4}\ge2.\sqrt{\dfrac{x^2}{x+y}.\dfrac{x+y}{4}}=x\\ \dfrac{y^2}{y+z}+\dfrac{y+z}{4}\ge y\\ \dfrac{z^2}{x+z}+\dfrac{x+z}{4}\ge z\\ \Rightarrow\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}+\dfrac{x+y+z}{2}\ge x+y+z\\ \Rightarrow\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\ge2-1=1\)
bài 3:
a, đặt x12=y9=z5=kx12=y9=z5=k
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29
A/D tính chất dãy tỉ số bằng nhau ta có:
x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
ợ ợ hahahahahaha
Giá trị nhỏ nhất là 3