Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
<=> (ab+bc+ca)(a+b+c)=abc
<=> (ab+bc+ca)(a+b+c)-abc=0
<=> (a+b)(b+c)(c+a) = 0
<=> a+b=0 hoặc b+c=0 hoặc c+a=0
<=> a=-b hoặc b=-c hoặc c = -a
sau đó thay vào cái cần c/m
\(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}=k\\ \Rightarrow\left\{{}\begin{matrix}x=2017k\\y=2018k\\z=2019k\end{matrix}\right.\)
\(4\left(x-y\right)\left(y-z\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)=4\left(-k\right)\left(-k\right)=4k^2=\left(2k\right)^2=\left(2019k-2017k\right)^2=\left(z-x\right)^2\left(ĐPCM\right)\)
Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+3xyz-xyz=0\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz=0\)
\(\Leftrightarrow x^2y+xy^2+x^2z+xyz+y^2z+yz^2+xz^2+xyz=0\)
\(\Leftrightarrow x\left(xy+y^2+xz+yz\right)+z\left(y^2+yz+xz+xy\right)=0\)
\(\Leftrightarrow x\left[y\left(x+y\right)+z\left(x+y\right)\right]+z\left[y\left(y+z\right)+x\left(y+z\right)\right]=0\)
\(\Leftrightarrow x\left(x+y\right)\left(y+z\right)+z\left(y+z\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
* x = -y
\(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}}-\dfrac{1}{x^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{z^{2007}}\)(*)
\(\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}=\dfrac{1}{x^{2007}-x^{2007}+z^{2007}}=\dfrac{1}{z^{2007}}\)(*)
Từ (*) và (**) \(\Rightarrow\) đpcm
Tương tự xét y = -z và z = -x
Vậy nếu x, y, z khác 0 và x + y +z khác 0 thì \(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}\).
Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !
\(A=\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\) (đã sửa đề)
\(A+3=\dfrac{x+y+z}{z}+\dfrac{x+y+z}{x}+\dfrac{x+y+z}{y}\)
\(A+3=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=0\)
\(A=-3\)
Chào bạn
bạn nhân chéo lên rồi tách ra thì bạn sẽ có
1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0
Đến đây thì dễ rồi
Bạn có thể giải rõ ra được không