\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

@Unruly Kid

13 tháng 12 2017

gif thees

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow \frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

Suy ra \(yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x(x-y)-z(x-y)\)

\(\Leftrightarrow x^2+2yz=(x-z)(x-y)\)

\(\Rightarrow \frac{yz}{x^2+2yz}=\frac{yz}{(x-z)(x-y)}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(A=\frac{yz}{(x-y)(x-z)}+\frac{xz}{(y-x)(y-z)}+\frac{xy}{(z-x)(z-y)}\)

\(A=\frac{-yz(y-z)}{(x-y)(y-z)(z-x)}+\frac{-xz(z-x)}{(x-y)(y-z)(z-x)}+\frac{-xy(x-y)}{x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{(x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}=1\)

22 tháng 1 2019

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{0}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy \(A=0.\)

3 tháng 3 2019

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{0\Rightarrow\left(yz+xz+xy\right)}{xyz}=0\Rightarrow xy+xz+xy=0\)

ta có x2+2yz=x2+yz+yz=x2-yz-zx-xy=x.(x-z)-y.(x-z)=(x-y).(x-z)

tương tự ta có:x2+2xy=(x-z)*(y-z)

vậy\(A=\dfrac{yz}{\left(x-y\right).\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)a

\(A=\dfrac{yz\left(y-z\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{xz\left(x-z\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}+\dfrac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(y-z\right)\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

NV
13 tháng 1 2019

ĐK: \(x,y,z\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=0\Leftrightarrow xy+xz+yz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-xz-yz\\xz--xy-yz\\yz=-xy-xz\end{matrix}\right.\)

Ta có:

\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-xz=x\left(x-y\right)-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-z\right)\Rightarrow\dfrac{1}{x^2+2yz}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{1}{y^2+2xz}=\dfrac{1}{\left(y-x\right)\left(y-z\right)}=\dfrac{-1}{\left(x-y\right)\left(y-z\right)}\)

\(\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{\left(x-z\right)\left(y-z\right)}\)

Cộng vế với vế ta được:

\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}+\dfrac{-1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{y-z-\left(x-z\right)+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{y-z-x+z+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=0\) (đpcm)

26 tháng 11 2017

Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow\left\{{}\begin{matrix}1+\dfrac{x}{y}+\dfrac{x}{z}=0\left(1\right)\\1+\dfrac{y}{x}+\dfrac{y}{z}=0\left(2\right)\\1+\dfrac{z}{x}+\dfrac{z}{y}=0\left(3\right)\end{matrix}\right.\)

\(\dfrac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left(xy+yz+xz\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=0\)

\(\Rightarrow\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{y}{z}=0\)

\(\Rightarrow A+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{x}{z}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{y}{z}=0\)

Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\)suy ra:

\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}=-3\)

\(\Rightarrow A-3=0\Rightarrow A=3\)

29 tháng 12 2017

Nhân ra thôi

30 tháng 12 2017

\(A=\left(xy+yz+xz\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-xyz\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\\ =y+x+\dfrac{xy}{z}+y+z+\dfrac{yz}{x}+x+z+\dfrac{xz}{y}-\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\\ =2\left(x+y+z\right)=2.2018=4036\)

13 tháng 3 2017

dài đấy

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ < =>xy+yz+xz=0\\ < =>\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-yz\end{matrix}\right.\)

\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

cmtt

\(=>\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

A = ...

= \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\)

=\(\dfrac{yz+xz+xy}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)

mà xy + yz + xz = 0

=> (1) = 0

=> a = 0

10 tháng 1 2018

Pạn tham khảo cách làm nha!!!

Rút gọn phân thức

Chúc pạn hok tốt!!!