Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://l.facebook.com/l.php?u=https%3A%2F%2Fdiendan.hocmai.vn%2Fthreads%2Flai-mot-bai-hoi-bi-kho-ne.226600%2F&h=ATPqu0VSzda9HN6swPmBXeYI_mLVFweVVBz72hMQdgv8WnX0mStwGwBOxPLOstENmMST5KDKsbNuoFCvtOGM2CoqQpz94ahFl9MGizb0_iA8MRBBsDChfE7x3A22qDBUSKGjOjCJFPZu
a)
b)Từ \(xyz=1\Rightarrow x=\frac{1}{zy};y=\frac{1}{xz};z=\frac{1}{xy}\)
\(M=\frac{z^2y^2}{x\left(z+y\right)}+\frac{x^2z^2}{y\left(x+z\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+xz\right)^2}{2\left(xy+yz+xz\right)}=\frac{xy+yz+xz}{2}\)(Bđt Cauchy-Schwarz)
\(\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)(Bđt Cosi)
Dấu = khi \(x=y=z=1\)
a) Gọi 5 số là: \(a_0,a_1,a_2,a_3,a_4\)
Lấy \(T_0=a_0\)
\(T_1=a_0+a_1\)
\(T_2=a_0+a_1+a_2\)
\(T_3=a_0+a_1+a_2+a_3\)
\(T_4=a_0+a_1+a_2+a_3+a_4\)
Trong 5 số: \(T_0,T_1,T_2,T_3,T_4\) có 2 trường hợp sau xảy ra:
TH1: Tồn tại 1 số \(T_i\) chia hết cho 5 => Điều phải chứng minh
TH2: Không có số nào chia hết cho 5 => Trong 5 số đó có 2 số khi chia cho 5 có cùng một số dư (theo nguyên lí Direchlet, vì 5 số đều không chia hết cho 5 nên khi chia cho 5 sẽ cho 4 số dư là {1, 2, 3,4}). Giả sử \(T_i\) và \(T_j\)(với i < j) chia cho 5 có cùng số dư => Hiệu \(T_j-T_i\) chia hết cho 5. Mà hiệu \(T_j-T_i=a_{i+1}+a_{i+2}+...+a_j\) chia hết cho 5 => Điều phải chứng minh.
Theo đề: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow-\left(x+y\right)=z\)
\(\Leftrightarrow-\left(x+y\right)^5=z^5\)
\(x^2+y^2+z^2=1\)
\(\Rightarrow x^2+y^2=1-z^2\)
\(\Rightarrow\left(x+y\right)^2-2xy=1-z^2\)
\(\Rightarrow\left(x+y\right)^2=1-z^2+2xy\)
\(\Rightarrow\left(-z\right)^2=1-z^2+2xy\)
\(\Leftrightarrow xy=\frac{2z^2-1}{2}\)
Nên ta có:
\(VT=x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=x^5+y^5-x^5-5x^4y-10x^3y^2-10x^2y^3-5xy^4-y^5\)
\(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)
\(=-5xy\left(x+y\right)\left(x^2-xy+y^2\right)-10x^2y^2\left(x+y\right)\)
\(=-5xy\left(x+y\right)\left(x^2-xy+y^2+2xy\right)\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=-5.\frac{2z^2-1}{2}.\left(-z\right).\left(1-z^2+\frac{2z^2-1}{2}\right)\)
\(=\frac{5z\left(2z^2-z\right)}{4}=\frac{5}{4}z\left(2x^2-1\right)=\frac{5}{4}\left(2z^3-z\right)=VP\)
=> đpcm