K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

cô si cho gt

11 tháng 5 2017

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{2x+y+z}{2}\)

cmtt => GTLN

12 tháng 5 2017

Tìm max:

Ta có:

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{2x+y+z}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt{2y+zx}\le\frac{2y+z+x}{2}\left(2\right)\\\sqrt{2z+xy}\le\frac{2z+x+y}{2}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(A\le\frac{2x+y+z}{2}+\frac{2y+z+x}{2}+\frac{2z+x+y}{2}=2\left(x+y+z\right)=4\)

Dấu = xảy ra khi \(x=y=z=\frac{2}{3}\)

Tìm min:

Ta có: \(\hept{\begin{cases}\sqrt{2x+yz}\ge0\\\sqrt{2y+zx}\ge0\\\sqrt{2z+xy}\ge0\end{cases}}\)

\(\Rightarrow A\ge0\)

Dấu = xảy ra khi \(\left(x,y,z\right)=\left(-2,2,2;2,-2,2;2,2,-2\right)\)

1 tháng 3 2016

de thế mà ko biết lam

21 tháng 3 2016

ai biết giải hộ. xin chỉ giáo

16 tháng 10 2015

+) Tìm GTNN

Đặt t = x + y + z 

=> t2 = (x + y+ z)= x+ y+ z+ 2(xy + yz + zx)  = 3 + 2(xy + yz+ zx) => xy + yz + zx = (t2 - 3)/2

Khi đó, A = t + \(\frac{t^2-3}{2}\) = \(\frac{t^2+2t-3}{2}=\frac{\left(t+1\right)^2-4}{2}\ge\frac{0-4}{2}=-2\)

=> Min A = -2 

Dấu "=" xảy ra khi t = - 1 <=> x + y + z = - 1. kết hợp x2 + y+ z= 3 chọn x = 1;y = -1; z = -1

Vậy....

 

16 tháng 10 2015

tìm GTLN nè:

ab+bc+ca\(\le\)(a+b+c)^2/3

mặt khác :

(a+b+c)^2\(\le\)3(a^2+b^2+c^2)=9

=> A=<3+3=6 khi a=b=c=1

NV
12 tháng 4 2021

\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)

\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)

\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)

\(P\le2\left(x+y+z\right)=2\)

\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)