Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4x+1+4y+1+4z+1\right)=21.\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\left(đpcm\right)\)
Dấu "=" xra :
\(\frac{4x+1}{1}=\frac{4y+1}{1}=\frac{4z+1}{1}\Rightarrow x=y=z=\frac{1}{3}\)
Áp dụng BĐT Bunhiacopxki vào bài toán , ta có :
\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4x+4y+4z+3\right)=3.7=21\)
\(\Rightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\)
Đẳng thức xảy ra khi : \(x=y=z=\dfrac{1}{3}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)
Khi đó \(\frac{1}{4x^2+y^2+z^2}=\frac{1}{3x^2+x^2+y^2+z^2}\le\frac{1}{3x^2+3}\)
Viết lại BĐT cần chứng minh như sau:
\(\frac{1}{3x^2+3}+\frac{1}{3y^2+3}+\frac{1}{3z^2+3}\le\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\le\frac{3}{2}\)
Ta có BĐT phụ \(\frac{1}{x^2+1}\le-\frac{1}{2}x+1\)
\(\Leftrightarrow-\frac{x\left(x-1\right)^2}{2\left(x^2+1\right)}\ge0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{y^2+1}\le-\frac{1}{2}y+1;\frac{1}{z^2+1}\le-\frac{1}{2}z+1\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le-\frac{1}{2}\left(x+y+z\right)+3=-\frac{3}{2}+3=\frac{3}{2}=VP\)
Xảy ra khi x=y=z=1
Cho mih hỏi bđt phụ đó là sao, có thể CM giùm mih đc hok
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
\(\frac{y+1}{4x^2+1}=1-\frac{4x^2-y}{4x^2+1}\ge1-\frac{4x^2-y}{2\sqrt{4x^2.1}}=1+\frac{y}{4x}-x;\)
Tương tự ta được \(\frac{1+z}{4y^2+1}\ge1+\frac{z}{4y}-y\); \(\frac{1+x}{4z^2+1}\ge1+\frac{x}{4z}-z\)
cộng 3 bất đăng thức trên ta được p \(\ge3+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)-\left(x+y+z\right)=\frac{3}{2}+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)\ge\)\(\frac{3}{2}+\frac{1}{4}.3\sqrt[3]{\frac{y}{x}.\frac{z}{y}.\frac{x}{z}}=\frac{9}{4}\)
p min khi x=y=z = 1/2
Áp dụng bất đẳng thức bunhiacopxki ta có :
\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1+1+1\right)\left(4x+1+4y+1+4z+1\right)\)
\(=3.\left[4\left(x+y+z\right)+3\right]=3.7=21\)
\(\Rightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)
\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)
Ta có:
\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)
\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)
đề ẩu thế.... Có lẽ là căn 21
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\)
\(\le\left(1+1+1\right)\left(4\left(x+y+z\right)+3\right)\)
\(=3\cdot\left(4\cdot1+3\right)=21\)
\(\Rightarrow VT^2\le21\Rightarrow VT\le\sqrt{21}\)
Khi \(x=y=z=\frac{1}{3}>-\frac{1}{4}\)