\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

ý sai đề rồi =))

x,y,z > 0. Tìm GTNN của

\(P=\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+\dfrac{12}{\left(x+y\right)\sqrt{x+y}+1}+\dfrac{12}{\left(y+z\right)\sqrt{y+z}+1}\)

Các bạn giúp mk với ^^^^^^

16 tháng 8 2017

Giải bài này hơi dài, t ngại làm lắm :v you vào ib t chỉ cho =))

16 tháng 8 2017

ok!

11 tháng 7 2017

@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi

12 tháng 7 2017

thua :v

21 tháng 6 2017

1. Theo BĐT AM - GM, ta có:

\(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)

Do đó BĐT ban đầu sẽ đúng nếu ta C/m được

\(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)

Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)

( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )

22 tháng 6 2017

Hơi lâu đúng không mk giải bài 2 cho

18 tháng 2 2018

Câu 1 :

Ta có :

\(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)

\(=m^2-2m+1-8m+28\)

\(=m^2-10m+27>0\)

Do đó pt luôn có 2 nghiệm phân biệt

2 tháng 10 2017

mini của mày chịch nhau à hả cu

2 tháng 10 2017

phắn =="

4 tháng 3 2018

\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;