Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3xz+\left(x+y+z\right)\ge3xy+3xz+3\sqrt[3]{xyz}\)\(=3xy+3xz+3\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(xy+xz+1\right)}\)
Tiếp tục áp dụng bất đẳng thức dạng \(u^3+v^3\ge uv\left(u+v\right)\), ta được: \(\frac{1}{3\left(xy+xz+1\right)}=\frac{1}{3\left[x\left(\left(\sqrt[3]{y}\right)^3+\left(\sqrt[3]{z}\right)^3\right)+1\right]}\le\frac{1}{3\left[x\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1\right]}\)\(=\frac{\sqrt[3]{xyz}}{3\left[\sqrt[3]{x^2}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+\sqrt[3]{xyz}\right]}=\frac{\sqrt[3]{yz}}{3\left(\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}\right)}\)
Tương tự rồi cộng lại theo vế, ta được: \(P\le\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z = 1
Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)
\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)
Tương tự ta chứng minh được:
\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)
Cộng vế 3 BĐT trên lại:
\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)
\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)
Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:
\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)
\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)
\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)
\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)
\(=\frac{a+b+c}{a+b+c}=1\)
Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)
Vậy Max(A) = 1 khi x = y = z = 1
Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath
\(P=\sum\frac{1}{3x\left(y+z\right)+x+y+z}\le\sum\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}=\frac{1}{3}\sum\frac{xyz}{x\left(y+z\right)+xyz}=\frac{1}{3}\sum\frac{yz}{yz+y+z}\)
\(P\le\frac{1}{3}\sum\frac{1}{1+\frac{1}{y}+\frac{1}{z}}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
\(P\le\frac{1}{3}\sum\frac{1}{a^3+b^3+1}\)
Bài toán quen thuộc, chắc bạn giải quyết nốt được
\(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}\)
\(=\frac{xyz}{xy\left(\frac{1}{x}+\frac{1}{y}\right)zx\left(\frac{1}{z}+\frac{1}{x}\right)}=\frac{xyz}{\left(x+y\right)\left(z+x\right)}\)
Tương tự, ta cũng có: \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)}\)\(;\)\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)
\(VT=\frac{xyz}{\left(x+y\right)\left(z+x\right)}+\frac{2xyz}{\left(x+y\right)\left(y+z\right)}+\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)
\(=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) ( đpcm )
dễ mà bạn :))) gáy tí , sai thì thôi
\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)
\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)
\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc
EZ :)))
\(xy+yz+zx=xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì
\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)
Ta co:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)
Từ đây ta co:
\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)
Theo BĐT AM - GM cho 3 số dương, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3zx+x+y+z\)
\(\ge3xy+3zx+3\sqrt[3]{xyz}=3zx+3xy+3=3\left(zx+xy+1\right)\)(Do xyz = 1)
\(\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(zx+xy+1\right)}\)(1)
Tương tự ta có: \(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3\left(xy+yz+1\right)}\)(2); \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3\left(yz+zx+1\right)}\)(3)
Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được: \(P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\)
Ta có BĐT: \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, với a, b dương thì (*)\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Áp dụng BĐT trên và sử dụng giả thiết xyz = 1, ta được: \(\frac{1}{xy+yz+1}=\frac{\sqrt[3]{xyz}}{y\left(z+x\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{xyz}}{y\left[\left(\sqrt[3]{z}\right)^3+\left(\sqrt[3]{x}\right)^3\right]+\sqrt[3]{xyz}}\le\frac{\sqrt[3]{xyz}}{y\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^3zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^2}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)
\(=\frac{\sqrt[3]{zx}}{\sqrt[3]{y}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{zx}}=\frac{\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(*)
Tương tự: \(\frac{1}{yz+zx+1}\le\frac{\sqrt[3]{xy}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(**); \(\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{yz}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(***)
Cộng theo từng vế của 3 BĐT (*), (**), (***), ta được: \(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}=1\)
\(\Rightarrow P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\le\frac{1}{3}\)
Đẳng thức xảy ra khi x = y = z = 1
https://h.vn//hoi-dap/question/873191.html