K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

x^3+y^3+z^3-3xyz = 0

<=> (x+y+z).(x^2+y^2+z^2-xy-yz-zx) = 0

Mà x+y+z > 0 => x^2+y^2+z^2-xy-yz-zx = 0

<=> 2x^2+2y^2+2z^2-2xy-2yz-2zx = 0

<=> (x-y)^2+(y-z)^2+(z-x)^2 = 0

=> x-y=0;y-z=0;z-x=0

=> P = 0

k mk nha

7 tháng 10 2018

\(Q=\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^3}{\left(x-y\right)\left(x-z\right)}-\frac{y^3}{\left(x-y\right)\left(y-z\right)}+\frac{z^3}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^3\left(y-z\right)-y^3\left(x-z\right)+z^3\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)(1)

Ta có: 

      \(x^3\left(y-z\right)-y^3\left(x-z\right)+z^3\left(x-y\right)\)

\(=x^3\left(y-z\right)-y^3\left(y-z\right)-y^3\left(x-y\right)+z^3\left(x-y\right)\)

\(=\left(y-z\right)\left(x^3-y^3\right)-\left(x-y\right)\left(y^3-z^3\right)\)

\(=\left(y-z\right)\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)\left(y-z\right)\left(y^2+yz+z^2\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x^2+xy+y^2-y^2-yz-z^2\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x^2+xy-yz-z^2\right)\)

\(=\left(x-y\right)\left(y-z\right)\left[\left(x-z\right)\left(x+z\right)+y\left(x-z\right)\right]\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(x+y+z\right)=1000\left(x-y\right)\left(y-z\right)\left(x-z\right)\)(2)

Từ (1) và (2), ta có Q = 1000

24 tháng 3 2020

Tham khảo:Simple inequality

4 tháng 1 2020

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\). Tìm Min:\(P=\Sigma_{cyc}\frac{a^3}{\left(b+2c\right)}\)

Auto làm nốt:3