Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
\(A=\sqrt{\frac{x^2}{2xyz.yz+xz.xy}}+\sqrt{\frac{y^2}{2xyz.xz+xy.yz}}+\sqrt{\frac{z^2}{2xyz.xy+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{yz\left(xy+yz+xz\right)+xz.xy}}+\sqrt{\frac{y^2}{xz\left(xy+yz+xz\right)+xy.yz}}+\sqrt{\frac{z^2}{xy\left(xy+yz+xz\right)+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{\left(yz+xy\right)\left(yz+xz\right)}}+\sqrt{\frac{y^2}{\left(xz+xy\right)\left(xz+yz\right)}}+\sqrt{\frac{z^2}{\left(xy+yz\right)\left(xy+xz\right)}}\)
Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\) ta có:
\(2A\le\frac{x}{yz+xy}+\frac{x}{yz+xz}+\frac{y}{xz+xy}+\frac{y}{xz+yz}+\frac{z}{xy+yz}+\frac{z}{xy+xz}\)
\(=\frac{x+z}{yz+xy}+\frac{x+y}{yz+xz}+\frac{y+z}{xz+xy}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Mà: \(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow2A\le2\Rightarrow A\le1."="\Leftrightarrow a=b=c=\frac{3}{2}\)
Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)
Áp dụng BĐT Buniacoxki ta có
\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)
=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)
=> \(A\ge\sqrt{3}\)
\(MinA=\sqrt{3}\)khi x=y=z=3
Ta có:\(\sqrt{x^2-xy+y^2}=\sqrt{\frac{1}{4}\left(x+y\right)^2+\frac{5}{4}\left(x-y\right)^2}\ge\frac{1}{2}\left(x+y\right)\)
Ttự,có:\(\sqrt{y^2-yz+z^2}\ge\frac{1}{2}\left(y+z\right);\sqrt{z^2-xz+x^2}\ge\frac{1}{2}\left(x+z\right)\)
\(\Rightarrow2S\ge\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\)
Đặt \(a=x+y+2z;b=y+z+2x;c=z+x+2y\)
Có:\(b+c-a=2\left(x+y\right);a+c-b=2\left(y+z\right);a+b-c=2\left(x+z\right)\)
\(\Rightarrow4S\ge\frac{b+c-a}{a}+\frac{a+c-b}{b}+\frac{a+b-c}{c}\)
\(=\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\)
\(\ge2+2+2+1=7\)
\(\Rightarrow S\ge\frac{7}{4}\)
\(S_{min}=\frac{7}{4}\Leftrightarrow x+y+2z=y+z+2x=x+z+2y\)\(\Leftrightarrow x=y=z\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\)
\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\)
Cần chứng minh \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)
\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{xz}}{xz\left(4-xz\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)
Cauchy-Schwarz: \(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)
\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)
\(\Leftrightarrow\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)
Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)
Dấu "=" <=> x=y=z=1
gọi P là cái 1/x+1/y+1/z nha
1) (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/(xy) + 2/(yz) + 2/(zx)
---> 3 = P + 2(x+y+z)/(xyz) = P + 2 ---> P = 1
minh ơi, mày còn nhanh hơn tao >o<