Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A=\(\frac{y+z+z+x+x+y}{x+y+z}\)=\(\frac{2x+2y+2z}{x+y+z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)
\(\Rightarrow\frac{x}{y+z}+1=\frac{y}{z+x}+1=\frac{z}{x+y}+1\)
\(\Rightarrow\frac{x+y+z}{y+z}=\frac{y+z+x}{z+x}=\frac{z+x+y}{x+y}\)
Vì x+y+z khác 0 nên ta xét \(x+y+z\ne0\) suy ra x=y=z
Khi đó \(A=\frac{x+x}{x}+\frac{x+x}{x}+\frac{x+x}{x}=\frac{2x}{x}+\frac{2x}{x}+\frac{2x}{x}=2+2+2=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=\frac{1}{90}.\)
\(\Rightarrow2007.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)=2007\cdot\frac{1}{90}\)
\(\frac{2007}{x+y}+\frac{2007}{y+z}+\frac{2007}{x+z}=\frac{223}{10}\)
mà x+y+z = 2007
\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}=\frac{223}{10}\)
\(1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{x+z}=\frac{223}{10}\)
\(\Rightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{x+z}=\frac{223}{10}-3=\frac{193}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
TA CÓ : ( x / y + z + t ) + 1 = ( y / z +t + x ) + 1 = ( t / x + y + z ) + 1
Suy ra : x+y+z+t / y+z+t = x+y+z+t / z+t+x = x+y+z+t / t+x+y = x+y+z+t / x+y+z
do x+y+z+t khác 0 suy ra x=y=z=t suy ra M= 1+1+1+1 =4 tích đúng nha
Theo đề ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)(vì x +y+z \(\ne\)0)
\(\frac{x}{y}=1\Rightarrow x=y\) (1) . \(\frac{y}{z}=1\Rightarrow y=z\)(2)
Từ (1) vs (2) \(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x^{2007}.z^{4014}}{y^{6021}}=\frac{x^{2007}.x^{4014}}{x^{6021}}=\frac{x^{2007+4014}}{x^{6021}}=\frac{x^{6021}}{x^{6021}}=1\)
thank you bạn nhé