Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ x>/ 0; y>/ 0
/x+y/ = /x/ + /y/ = x+y
+ x<0 ; y<0
/x+y/ = /x/ + /y/ = - x -y =-( x+y)
+ x >/ 0 ; y </ 0 => / x+ y/ = x+y < x < /x/ + /y/
x</ 0 ; y>/ 0 tương tự
Vậy / x+y/ </ /x/ + /y/
a) \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow\left(x+y\right)^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow2xy\le2\left|xy\right|\) (luôn đúng \(\forall x;y\))
Vật bđt đã đc chứng minh
b ) tương tự
với mọi x,y thuộc Q,ta luôn luôn có:
x<|x| và -x<|x|; y<|y| và -y<|y|
=>x+y<|x|+|y| và -x-y<|x|+|y|
=>x+y>-(|x|+|y|)
=>-(|x|+|y|)<x+y<|x|+|y|
=>|x+y|<|x|+|y| (đpcm)
dấu "=" xảy ra <=>xy>0
a) Với mọi \(x,y\in Q\), ta luôn luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) ; \(y\le\left|y\right|\) và \(-y\le\left|y\right|\)
Suy ra \(x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
hay \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) Theo câu a ta có:
\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) ,suy ra \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Xin lỗi bài này lớp 6 mình có ôn học sinh giỏi rồi mà quên rồi
bạn bấm vào đây !Cho x, y $\in$∈ Q. Chứng tỏ rằng: a/ | x + y | $\le$≤ | x | + | y | b/ | x - y | $\ge$≥ | x | - | y |
Ta phải CM : - (/x/+/y/)<x+y</x/+/y/
ta thấy : x</x/
y</y/
suy ra x+y </x/+/y/
sau đó bạn CM : - (/x/+/y/)<x+y