Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\) khi \(x=y\)
Đặt \(x+\sqrt{1+x^2}=a\Rightarrow a-x=\sqrt{1+x^2}\Rightarrow a^2-2ax+x^2=1+x^2\)
=> \(a^2-1=2ax\Rightarrow x=\frac{1}{2}\left(a-\frac{1}{a}\right)\)
Tương tự, đặt \(y+\sqrt{1+y^2}=b\Rightarrow y=\frac{1}{2}\left(b-\frac{1}{b}\right)\)
=> x+y=\(\frac{1}{2}\left(a+b-\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{2}\left(a+b-\frac{3}{3a}+\frac{3}{3b}\right)=\frac{1}{2}\left(a+b-\frac{1}{3}a-\frac{1}{3}b\right)\)(vì ab=3)
=\(\frac{1}{2}.\frac{2}{3}\left(a+b\right)=\frac{1}{3}\left(a+b\right)\)
Mà \(\left(a+b\right)^2\ge2ab=6\Rightarrow a+b\ge\sqrt{6}\Rightarrow\frac{1}{3}\left(a+b\right)\ge\frac{\sqrt{6}}{3}\)
dấu = xảy ra <=> a=b<=> x=y bạn tự thay vào và tự tìm nhá
^_^
TA CÓ:
\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)
\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)
DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\)
\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\)
\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\)
Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Ta có: \(\left(\sqrt{x^2+1}-x\right)\left(\sqrt{y^2+1}-y\right)=\frac{1}{2}\)
=>\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+xy-x\sqrt{y^2+1}-y\sqrt{x^2+1}=\frac{1}{2}\left(1\right)\)
Lại có: \(\left(\sqrt{x^2+1}-x\right)\left(\sqrt{y^2+1}-y\right)=\frac{1}{2}\)
=>\(\frac{x^2+1-x^2}{\sqrt{x^2+1}+x}.\frac{y^2+1-y^2}{\sqrt{y^2+1}+y}=\frac{1}{2}\)
=>\(\left(\sqrt{x^2+1}+x\right)\left(\sqrt{y^2+1}+y\right)=2\)
=>\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+xy+x\sqrt{y^2+1}+y\sqrt{x^2+1}=2\left(2\right)\)
Lấy (1)+(2) ta đc:
\(2\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+2xy=\frac{5}{2}\)
=>\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\frac{5}{4}-xy\)
=>\(x^2y^2+x^2+y^2+1=\frac{25}{16}-\frac{5}{2}xy+x^2y^2\)
=>\(x^2+y^2+\frac{5}{2}xy=\frac{9}{16}\)
=>\(\left(x+y\right)^2+\frac{1}{2}xy=\frac{9}{16}\)
Vì \(\frac{1}{2}xy\le\frac{\left(x+y\right)^2}{8}\)
=>\(\frac{9}{8}.\left(x+y\right)^2\ge\frac{9}{16}\)
=>\(x+y\ge\frac{1}{\sqrt{2}}\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{\sqrt{2}}\)
Vậy Min \(F=\frac{1}{\sqrt{2}}< =>x=y=\frac{1}{2\sqrt{2}}\)