Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
$P^2=\frac{x^2}{y^2+2\sqrt{2}+2}=\frac{1-y^2}{y^2+2\sqrt{2}y+2}$
<=>$P^2.y^2+2\sqrt{2}P^2y+2P^2=1-y^2$
<=>$(P^2+1).y^2+2\sqrt{2}P^2y+2P^2-1=0$
để tồn tại y thì $\Delta\geq0<=>-2P^4+P^2+1\geq0<=>(P^2-1).(2P^2+1)\leq 0$
<=>$P^2-1\leq 0<=>-1\leq P \leq 1$
suy ra GTLN của P là 1, thay P vào pt trên ta tìm được $y=\frac{-1}{\sqrt{2}}$
suy ra $y+\sqrt{2} >0$ nên để P đạt max thì x phải dương ( do mẫu dương để P max thì tử phải dương)
mà $x^2=1-y^2=\frac{1}{2}$ suy ra $x=\frac{1}{\sqrt{2}}$
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
Ta chứng minh được:
\(0\le x:y\le1\)
\(\Rightarrow x\ge x^2;y\ge y^2;xy\ge0\)
\(P^2=8+5\left(x+y\right)+2\sqrt{16+20\left(x+y\right)+25xy}\)
\(P^2\ge8+5\left(x^2+y^2\right)+2\sqrt{16+20\left(x^2+y^2\right)}\)
\(P^2\ge8+5+2\sqrt{16+20}=25\)
\(\Rightarrow P\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}\)
Lời giải:
Ta có:
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
\(\Leftrightarrow x\sqrt{1-y^2}=1-y\sqrt{1-x^2}\)
\(\Rightarrow x^2(1-y^2)=1+y^2(1-x^2)-2y\sqrt{1-x^2}\) (bình phương hai vế)
\(\Leftrightarrow x^2=1+y^2-2y\sqrt{1-x^2}\)
\(\Leftrightarrow y^2+(1-x^2)-2y\sqrt{1-x^2}=0\)
\(\Leftrightarrow (y-\sqrt{1-x^2})^2=0\)
\(\Rightarrow y-\sqrt{1-x^2}=0\Rightarrow y=\sqrt{1-x^2}\)
\(\Rightarrow y^2=1-x^2\Leftrightarrow x^2+y^2=1\)
Do đó: \(A=5x^2+5y^2=5(x^2+y^2)=5\)
Em cảm ơn nhiều ạ !