K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Ta có:x+y=5 vậy (x+y)^2=25 hay x^2+y^2+2xy=25(1)

Mà x^2+y^2=13(2)

Từ(1)(2) suy ra 2xy=12 hay xy=6

Ta có:x^3+y^3=(x+y)(x^2-xy+y^2)=5×(13-xy)=5×(13-6)=35

X^4+y^4=(x^2+y^2)^2-2(xy)^2=13^2-2×6^2=169-72=97

17 tháng 8 2019

Ta có: \(\left(x+y\right)^2\) = \(x^2\)+2xy+\(y^2\)

\(\Rightarrow\)xy = (\(\left(x+y\right)^2\)- (\(x^2\)+\(y^2\))):2= 6

Áp dụng HĐT:

\(x^3\)+\(y^3\)= (x+y)(\(x^2\)-xy+\(y^2\))=5.(13-6)=35

19 tháng 10 2019

a) Ta có:\(\left(x+y\right)^2=5^2\)(Vì x + y = 5)

\(\Leftrightarrow x^2+2xy+y^2=25\)

  \(\Leftrightarrow x^2+2.4+y^2=25\)

\(\Leftrightarrow x^2+8+y^2=25\)

\(\Leftrightarrow x^2+y^2=17\)

b) \(\left(x+y\right)^2=3^2\)(Vì x + y = 3)

\(\Leftrightarrow x^2+2xy+y^2=9\)

\(\Leftrightarrow2xy+5=9\)

\(\Leftrightarrow2xy=4\)

\(\Leftrightarrow xy=2\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3\left(5-2\right)=9\)

19 tháng 10 2019

a) ta có:(x+y)2=x2+2xy+y2=>x2+y2=(x+y)2-2xy

thay x+y=5;xy=4 vào biểu thức ta có:

52-2×4=25-8=17

18 tháng 7 2019

TL:

a) \(x^2+y^2=x^2+2xy+y^2-2xy\) 

  \(=\left(x+y\right)^2-2xy=25-12=13\)  

23 tháng 10 2019

Làm mẫu 1 phần nếu ko bít thì hỏi

Ta có: \(x-y=m\)

\(\Rightarrow\left(x-y\right)^2=m^2\)

\(\Leftrightarrow x^2-2xy+y^2=m^2\)

\(\Leftrightarrow x^2+y^2-2n=m^2\)

\(\Leftrightarrow x^2+y^2=m^2+2n\)

a, \(A=x^3y\left(x^4-y^3\right)-x^2y\left(x^5-y^3\right)\)

\(=x^7y-x^3y^4-x^7y+x^2y^3\)

\(=-x^3y^4+x^2y^3\)

\(=-x^2y^3\left(xy+1\right)\)

Thay x = -1 ; y = 2 ta có: 

\(-\left(-1\right)^2.2^3\left(\left(-1\right).2+1\right)=-1.8\left(-2+1\right)=-8.-1=8\)

b, \(B=x^3y^3\left(x^4-y^4\right)-x^3y^4\left(x^2-y^3\right)\)

\(=x^7y^3-x^3y^7-x^5y^6+x^3y^7\)

\(=x^7y^3-x^5y^6\)

\(=x^5y^3\left(x^2-y^3\right)\)

Thay x=1 ; y =2 ta có : 

\(1^5.2^3\left(1^2-2^3\right)=1.8\left(1-8\right)=8.\left(-7\right)=-56\)

Bạn tách ra đi bạn

16 tháng 9 2020

a) Ta có x + y = 25

=> (x + y)2 = 625

=> x2 + y2 + 2xy = 625

=> x2 + y2 + 10 = 625

=> x2 +y2 = 615

b) Ta có x + y = 3

=> (x + y)3 = 27

=> x3 + 3x2y + 3xy2 + y3 = 27

=> x3 + y3 + 3xy(x + y) = 27

=> x3 + y3 + 9xy = 27 

Lại có x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 2xy = 4

=> xy = 2

Khi đó x3 + y3 + 9xy + 27

=> x3 + y3 + 18 = 27

=> x3 + y3 = 9

c) Ta có x - y = 5

=> (x - y)2 = 25

=> x2 + y2 - 2xy = 25

=> 2xy = -10

=> xy = -5

Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50

16 tháng 9 2020

Bài 4.

a) x2 + y2 = x2 + 2xy + y2 - 2xy

= ( x2 + 2xy + y2 ) - 2xy

= ( x + y )2 - 2xy

= 252 - 2.136

= 625 - 272

= 353

b) x + y = 3

⇔ ( x + y )2 = 9

⇔ x2 + 2xy + y2 = 9

⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )

⇔ 2xy = 4

⇔ xy = 2

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y )

= 33 - 3.2.3

= 27 - 18

= 9