Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)
\(=5n^2+5n+3⋮̸5\)
b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)
\(=-2\left(x^2y-xy^2\right)⋮2\)
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)
1, mk nhớ k lầm thì mk đã từng làm cho bn rồi ,kq=1/2
2,Dễ CM \(x^2+y^2+z^2\ge xy+yz+xz\) ,dấu "=" xảy ra <=>x=y=z
\(=>\left(x+y+z\right)^2\ge\left(xy+yz+xz\right)+2\left(xy+yz+xz\right)=3\left(xy+yz+xz\right)\)
\(=>9\ge3\left(xy+yz+xz\right)=>xy+yz+xz\le\frac{9}{3}=3\)
=>GTLN của xy+yz+xz=3
3)x3+y3+z3=3xyz
<=>x3+y3+z3-3xyz=0
<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0
<=>x+y+z=0 hoặc x2+y2+z2-xy-yz-xz=0
(+)x+y+z=0 thì x+y=-z;y+z=-x;x+z=-y
thế vô P =-1
(+)x2+y2+z2-xy-yz-xz=0
TH này thì x=y=z
thế vô P=2
2) \(x=y+1\Rightarrow x-y=1\)
\(\Rightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)
\(\Leftrightarrow x^8-y^8=x^8-y^8\)(đúng)
Vậy \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)(đpcm)
1)a)x+y=60
<=>(x+y)^2=3600
<=>x^2+2xy+y^2=3600(1)
mà xy=35 nên 2xy=2.35=70
(1)<=>x^2+70+y^2=3600
<=>x^2+y^2=3530
<=>(x^2+y^2)^2=12460900
<=>x^4+2x^2.y^2+y^4=12460900(2)
mà xy=35 nên 2x.x.y.y=2450
(2)<=>x^4+y^4=123458450
b)x+y=1
<=>(x+y)^3=1
<=>x^3+3x^2y+3xy^2+y^3=1
<=>x^3+y^3+3xy(x+y)=1
<=>x^3+y^3+3xy=1
=>M=1
x+y=1
<=>x^2+2xy+y^2=1(1)
B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)
=x^3+y^3+3xy(x^2+2xy+y^2)
=M.1=1(từ(1)
c)
x-y=1
<=>(x-y)^3=1
<=>x^3-3x^2y+3xy^2-y^3=1
<=>x^3-y^3-3xy(x-y)=1
<=>x^3-y^3-3xy=1
=>N=1
\(D=\frac{1}{x^2}+\frac{1}{y^2}=\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{2xy}\right)-\frac{1}{2xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{2}{xy}=\left(\frac{x+y}{xy}\right)^2-\frac{2}{xy}=\left(\frac{4}{-1}\right)^2-\frac{2}{-1}=18\)
\(d=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{x^2y^2}=\frac{\left(x+y\right)^2-2xy}{\left(xy\right)^2}\)
\(=\frac{4^2-2.\left(-1\right)}{\left(-1\right)^2}==\frac{16+2}{1}=18\)