\(x+y=3\).Tính x2 + 2xy + y2 + 1 - 4x - 4y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

TA có :

       \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 ta có :

            3^2 - 4.3 + 1 = 9 - 12 + 1 = -3 + 1 = -2

16 tháng 7 2019

(x3 - 4y)(x2 - 2xy + 4y)(x2 + 2xy + 4y) tại x = -2; y = 1/2

Thay x = -2; y = 1/2 vào biểu thức, ta có:

[(-2)3 - 4.(1/2)].[(-2)2 - 2.(-2).(1/2) + 4.(1/2)].[(-2)2 + 2.(-2).(1/2) + 4.(1/2)]

= -10.8.4

= -320

Vậy:..

20 tháng 8 2018

+) ta có : \(D=x^2+y^2+2xy-4x-4y+100\)

\(=\left(x+y\right)^2-4\left(x+y\right)+100=3^2-4.3+100=97\)

+) ta có : \(2x^2+y^2=4y-4x-6\Leftrightarrow2x^2+4x+2+y^2-4y+4=0\)

\(\Leftrightarrow2\left(x+1\right)^2+\left(y-2\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

thế vào \(A\) ta có :

\(A=\dfrac{2x^{100}+5\left(y-3\right)^{2011}}{x+y}=\dfrac{2.\left(-1\right)^{100}+5\left(2-3\right)^{2011}}{-1+2}=-3\)

26 tháng 2 2020

d, Ta có : \(\frac{x^3+4x^2-x-4}{x+4}\)

\(=\frac{x^2\left(x+4\right)-\left(x+4\right)}{x+4}=\frac{\left(x^2-1\right)\left(x+4\right)}{x+4}=x^2-1\)

- Thay \(x=-2\frac{1}{3}\) vào biểu thức trên ta được :

\(\left(-2\frac{1}{3}\right)^2-1=\frac{58}{9}\)

Vậy biểu thức có giá trị là \(\frac{58}{9}\) tại \(x=-2\frac{1}{3}\)

22 tháng 12 2016

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+2^2\right)+\left(y^2+4y+2^2\right)=0\)

Vì ...\(\ge\)0 nên để ...=0 thì từng cái =0 r giải bt

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

17 tháng 12 2017

a, A = (x-2)^2 = (12-2)^2 = 10^2 = 100

b, = x^3y^3-1/3x^2y^2+2x^2y^2z

k mk nha

9 tháng 4 2016

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

9 tháng 4 2016

1a) x=1, y=1/2, z=0