Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5x(x - y) - y(5x - y)
A = 5x2 - 5xy - 5xy + y2
A = 5x2 - 10xy + y2 (1)
Thay x = -1; y = 3 vào (1), ta có:
5.(-1)2 - 10.(-1).3 + 32 = 44
B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)
B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy
B = 12y3 + 6xy (1)
Thay x = 5; y = -1 vào (1), ta có:
12.(-1)3 + 6.5.(-1) = -42
C = 5x2(x - y2) + 3x(xy2 - y) - 5x3
C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3
C = -2x2y2 - 3xy (1)
Thay x = -2; y = -5 vào (1), ta có:
-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230
D = 6x2(y2 - xy + 2x2y) - 3xy(2xy - x2 + 4x3)
D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y
D = -3x3y (1)
Thay x = 11; y = -1 vào (1), ta có:
-3.113.(-1) = 3993
a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)
= 3x2-2xy+y2+x2-xy+2y2-4x2+y2
= 4y2-3xy
b, = x2-y2+2xy-x2-xy-2y2+4xy-1
= -3y2+5xy
c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2
a) \(A=\left(\frac{-1}{2}xy^2\right)z^3+\frac{3}{4}x^2y\left(2y\right)^3\)
\(A=\frac{-1}{2}xy^2z^3+6x^2y^4\)
b) Thay x = -1; y= 1; z = -1/2
có: A = -1/2 . (-1) . 1^2 . (-1/2) ^3 + 6. (-1)^2 . 1^4
A = -1/54 + 6
A = 323/54
Bài 1 :
A + B = 4x2 - 5xy + 3y2 + 3x2 + 2xy - y2
= ( 4x2 + 3x2 ) - ( 5xy - 2xy ) + ( 3y2 - y2 )
= 7x2 - 3xy + 2y2
A - B = 4x2 - 5xy + 3y2 - ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 - 3x2 - 2xy + y2
= ( 4x2 - 3x2 ) - ( 5xy + 2xy ) + ( 3y2 + y2 )
= x2 - 7xy + 4y2
Bài 2 :
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 - (5x2 - 2xy)
M = 6x2 + 9xy - y2 - 5x2 + 2xy
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
Vậy M = x2 + 11xy - y2
b) (3xy - 4y2) - N = x2 - 7xy + 8y2
N = 3xy - 4y2 - x2 - 7xy + 8y2
N = ( 3xy - 7xy ) - ( 4y2 - 8y2 ) - x2
N = -4xy + 4y2 - x2
Vậy N = -4xy + 4y2 - x2
3, Cho đa thức
A(x)+B(x) = (3x4-\(\dfrac{3}{4}\)x3+2x2-3)+(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3+8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)
= (3x4+8x4)+(-3/4x3+1/5x3)+(-3+2/5)+2x2-9x
= 11x4 -0.55x3-2.6+2x2-9x
A(x)-B(x)=(3x4-\(\dfrac{3}{4}\)x3+2x2-3)-(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3-8x4-\(\dfrac{1}{5}\)x3+9x-\(\dfrac{2}{5}\)
= (3x4-8x4)+(-3/4x3-1/5x3)+(-3-2/5)+2x2+9x
= -5x4-0.95x3-3.4+2x2+9x
B(x)-A(x)=(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))-(3x4-\(\dfrac{3}{4}\)x3+2x2-3)
=8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)-3x4+\(\dfrac{3}{4}\)x3-2x2+3
=(8x4-3x4)+(1/5x3+3/4x3)+(2/5+3)-9x-2x2
= 5x4+0.95x3+2.6-9x-2x2
Bài 26:
\(A+B+C=4x^2-5xy+3y^2+3x^2+2xy+y^2-x^2+3xy+2y^2\)
\(=\left(4x^2+3x^2-x^2\right)+\left(-5xy+2xy+3xy\right)+\left(3y^2+y^2+2y^2\right)\)
\(=6x^2+6y^2\)
\(B-C-A=\left(3x^2+2xy+y^2\right)-\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)\)
\(=3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2\)
\(=\left(3x^2-4x^2+x^2\right)+\left(2xy-3xy+5xy\right)+\left(y^2-2y^2-3y^2\right)\)
\(=-4xy-2y^2\)
\(C-A-B=\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)-\left(3x^2+2xy+y^2\right)\)
\(=-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2\)
\(=\left(-x^2-4x^2-3x^2\right)+\left(3xy+5xy-2xy\right)+\left(2y^2-3y^2-y^2\right)\)
\(=-8x^2+6xy-2y^2\)
cái câu B-C-A ý thì kết quả phải là 4xy-4y^2 chứ
vì: 2xy-3xy+5xy =4 xy
y^2 - 2y^2-3y^2 = -4y^2
=> = 4xy-4y^2
Ta có công thức (a+b)2=(a+b)(a+b)=a2+2ab+b2
Vậy a2+2ab+b2 cũng giống như x2+2xy+y2(chỉ khác ab;xy)
Do đó ta có:
A=x2+2xy+y2-4x-4y+1
A=(x+y)2-4.(x+y)+1
A=32-4.3+1
A=9-12+1
A=-2
Vậy A=-2
\(x^2+2xy+y^2-4x-4y+1=x^2+xy+xy+y^2-4\left(x+y\right)=x\left(x+y\right)+y\left(x+y\right)-4\left(x+y\right)+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4\times3+1=9-12+1=-2\)