K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

A=x3+y3+2xy=(x+y)(x2−xy+y2)+2xyA=x3+y3+2xy=(x+y)(x2−xy+y2)+2xy

Thay x+y=2x+y=2(giả thiết), suy ra:

A=2(x2−xy+y2)+2xy2(x2−xy+y2)+2xy=2(x2+y2)=2(x2+y2)

Sử dụng điều kiện x+y=2x+y=2như vậy: (x+y)2=4⇔x2+2xy+y2=4(x+y)2=4⇔x2+2xy+y2=4(1)(1)

Mà (x−y)2≥0⇔x2−2xy+y2≥0(x−y)2≥0⇔x2−2xy+y2≥0(2)(2)

Cộng (1) và (2), ta có: 2(x2+y2)≥42(x2+y2)≥4

Vậy Amin = 4 ⇔x2+y2=2⇔x=y=1