K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\(\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{x^2+y^2+2+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{2}=\frac{3}{2}\)

\("="\Leftrightarrow x=y=0\)

\(\frac{x^2+y^2+3}{x^2+y^2+2}\)

\(=\frac{x^2+y^2+2+1}{x^2+y^2+2}\)

\(=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{2}=\frac{3}{2}\)

\("="\Leftrightarrow x=y=0\)

31 tháng 8 2018

1) ta có: \(x:3=y.15\Rightarrow x\cdot\frac{1}{3}=y.15\Rightarrow\frac{x}{15}=\frac{y}{\frac{1}{3}}\)

ADTCDTSBN

...

2) bn ghi thiếu đề r

3) ta có: \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)

mà xy = 189 => 7k.3k = 189

                          21 k2 = 189

                                 k2 = 9 = 32 = (-3)2 => k = 3 hoặc k  = - 3

TH1: k = 3

x = 7.3 => x  = 21

y = 3.3 => y = 9

...

                           

31 tháng 8 2018

4) ta có: \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)

ADTCDTSBN

...

3 tháng 10 2018

a) Vì \(\left(2x+\frac{1}{4}\right)^4\ge0\forall x\)

\(\Rightarrow A\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\)

b) \(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)

Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\forall x\)

\(\Rightarrow B\le3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\)

3 tháng 10 2018

với mọi x thì (2x+1/4)4>=0 (lớn  hơn hoặc bằng )

A=(2x+1/4)4-1>=-1

để A đạt GTNN thì (2x+1/4)4=0

2x+1/4=0 =>x=-1/8

9 tháng 11 2017

\(P=\dfrac{1}{2}+\sqrt{x}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra khi:\(x=0\)

\(Q=7-2\sqrt{x-1}\le7\)

Dấu "=" xảy ra khi:\(x=1\)

10 tháng 11 2017

Để P có GTNN => \(\sqrt{x}\) phải là số nhỏ nhất có thể.

\(\sqrt{x}\) nhỏ nhất <=> x là số tự nhiên nhỏ nhất

=> x = 0

Vậy GTNN của P = \(\dfrac{1}{2}+\sqrt{0}\) = \(\dfrac{1}{2}\)

Để Q có GTLN => \(\sqrt{x-1}\) phải là số nhỏ nhất có thể

\(\sqrt{x-1}\) nhỏ nhất <=> x-1 là số tự nhiên nhỏ nhất

=> x-1 = 0 => x = 1

Vậy GTLN của Q =\(7-2\sqrt{x-1}=7-2\sqrt{1-1}=7-2\sqrt{0}=7-2.0=7-0=7\)

11 tháng 9 2018

xy = x/y 
<=> xy² = x 
<=> y² = 1 
<=> y = 1 hoặc y = -1 
-nếu y = 1 có 
x + 1 = x 
<=> 1 = 0 (loại) 
-nếu y = -1 có 
x - 1 = -x 
<=> x = 1/2 
thay vào thấy thỏa mãn 
vậy x = 1/2 ; y = -1

xy = x/y 

<=> xy² = x 

<=> y² = 1 

<=> y = 1 hoặc y = -1 

-nếu y = 1 có 

x + 1 = x 

<=> 1 = 0 (loại) 

-nếu y = -1 có 

x - 1 = -x 

<=> x = 1/2 

thay vào thấy thỏa mãn 

vậy x = 1/2 ; y = -1