K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

Có bất đẳng thức \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)\(\Leftrightarrow\left(x-y\right)^2\ge0\)

Dấu bằng xảy ra khi x = y 

Áp dụng bất đẳng thức \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)vào bài toán ta có:

\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\left[\frac{\left(x+y\right)^2}{2}\right]^2/2=\left[\frac{2^2}{2}\right]^2/2=2\left(đpcm\right)\)

P/s cậu hiểu không sợ cái phần áp dụng bất đẳng thức cậu không hiểu

12 tháng 3 2018

Sao có bất đẳng thức đó vậy ạ

15 tháng 11 2015

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+x\right)^2}{y+z+z+x+x+y}=\frac{x+y+x}{2}=1\)

Dấu ' =' xảy ra khi \(x=y=z=\frac{2}{3}\)

23 tháng 7 2016

Đặt  \(J=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)  với  \(\hept{\begin{cases}x,y,z>0\\x+y+z\le1\end{cases}}\left(i\right)\)

Áp dụng bất đẳng thức  \(B.C.S\)  cho hai bộ số thực không âm gồm có  \(\left(x^2;\frac{1}{x^2}\right)\)  và  \(\left(1^2+9^2\right),\) ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(1^2+9^2\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Rightarrow\)  \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{x}\right)\)   \(\left(1\right)\)

Đơn giản thiết lập hai bất đẳng thức còn lại theo vòng hoán vị  \(y\rightarrow z\) , ta cũng có:

\(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{y}\right)\)   \(\left(2\right);\)   \(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{z}\right)\)  \(\left(3\right)\)

Cộng từng vế  các bđt  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\) , suy ra:

\(J\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

Ta có:

\(K=x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(=\left(9x+\frac{1}{x}\right)+\left(9y+\frac{1}{y}\right)+\left(9z+\frac{1}{z}\right)+8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-8\left(x+y+z\right)\)

Khi đó, áp dụng bđt Cauchy đối với từng ba biểu thức đầu tiên, tiếp tục với bđt Cauchy-Swarz dạng Engel cho biểu thức thứ tư, chú ý rằng điều kiện đã cho  \(\left(i\right)\) , ta có:

\(K\ge2\sqrt{9x.\frac{1}{x}}+2\sqrt{9y.\frac{1}{y}}+2\sqrt{9z.\frac{1}{z}}+\frac{72}{x+y+z}-8\left(x+y+z\right)\)

     \(=6+6+6+72-8=82\)

Do đó,  \(K\ge82\)

Suy ra  \(J\ge\frac{82}{\sqrt{82}}=\sqrt{82}\)  (đpcm)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z=\frac{1}{3}\)

9 tháng 10 2016

xin lỗi, đề bài là y^2 nhá, mình quên

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg