Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)
\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)
\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)
\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)
\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)
Đến đây dễ rồi bạn tự làm tiếp nhê
\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)
\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)
\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)
\(\Rightarrow x\ge y\)
Vậy với \(x\ge y\Rightarrowđpcm\)
a)ko bít đề bắt làm j
b)Px=x(1+x+x2+...+x2015+x2018)
Px=x+x2+...+x2017
Px-P=(x+x2+...+x2017)-(1+x+x2+...+x2015+x2018)
P(x-1)=x2017-1
P=(x2017-1)/(x-1)
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
mình sửa đề nhé~
Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)
\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2xz\ge0\forall x;y;z\)
\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)\ge2xy+2yz+2xz\forall x;y;z\)
\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2xy+2yz+2xz\forall x;y;z\)
\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\forall x;y;z\)
Mà \(3.\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)
Có: \(x^{2018}+y^{2018}+z^{2018}=27^{673}\)
\(\Leftrightarrow3.x^{2018}=27^{673}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
đến đây bạn tự làm nốt nhé
Lời giải:
Ta có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Vì \((x-y)^2; (y-z)^2;(z-x)^2\geq 0\), do đó để tổng của chúng bằng $0$ thì:
\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)
\(\Rightarrow 3x^{2017}=3y^{2017}=3z^{2017}=x^{2017}+y^{2017}+z^{2017}=9\)
\(\Rightarrow x=y=z=\sqrt[2017]{3}\)
\(\Rightarrow \left(\frac{2017x+2018y-4023z}{3}\right)^{2017}=\left(\frac{12x}{3}\right)^{2017}=(4x)^{2017}=3.4^{2017}\)
Ta có:
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\) và x+y=2
Xét dấu =
Dấu ''='' xảy ra khi và chỉ khi
x=y=1
Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1
Hết.
Em mới học lớp 7 nên ko biết đúng ko