K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Ta có:

\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\frac{\left(a+b\right)^2}{1}=\left(a+b\right)^2\)

Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\x+y=1\end{cases}}\Leftrightarrow...\) (tự tìm nha! Mình đang bận)

Vậy...

7 tháng 4 2018

tại sao 

\(\frac{a^2}{x^2}\)+\(\frac{b^2}{y^2}\)\(\ge\)\(\frac{\left(a+b\right)^2}{x+y}\)

7 tháng 8 2019

cj MAi

7 tháng 8 2019

                                                               Bài giải

                        Ta có : \(P=\frac{a^2}{x}+\frac{b^2}{y}\) đạt GTNN khi \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN

             Mà \(\frac{a^2}{x}\) và \(\frac{b^2}{y}\) cùng đạt GTNN khi \(a^2\) và \(b^2\) cùng đạt giá trị nhỏ nhất 

                     \(\Rightarrow\text{ }a^2\text{ và }b^2=0\)

\(\Rightarrow\text{ }a,b=0\)

\(\text{Vì }0\) chia số nào cũng bằng 0 

\(\Rightarrow\text{ }GTNN\text{ của }P=0\)

14 tháng 4 2017

Vì x+y=1 và x>0;y>0 nên \(\frac{a^2}{x};\frac{b^2}{y}\)có nghĩa

Ta có: \(a^2\ge0\forall a\)

\(b^2\ge0\forall b\)

GTNN của B đạt được \(\Leftrightarrow a^2;b^2\)nhỏ nhất

GTNN của \(a^2;b^2\)là 0

\(\Rightarrow GTNN\)của P là \(\frac{0}{x}+\frac{0}{y}=0\)

Vậy GTNN của P là 0

14 tháng 4 2017

a;b là hằng số dương mà bạn

16 tháng 1 2017

Câu hỏi của thanh tam tran - Toán lớp 7 - Học toán với OnlineMath

28 tháng 5 2017

\(x+y=1\Leftrightarrow x^2+2xy+y^2=1\)

mà \(x^2+y^2\ge2xy\Rightarrow x^2-2xy+y^2\ge0\)cộng vế với vế ta được

\(x^2+y^2\ge\frac{1}{2}\)

\(A=\frac{1}{X^2+y^2}+\frac{1}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{0,5}=6\)

\(A_{min}=6\)dấu = khi x=y= 1/2

11 tháng 2 2018

Chứng minh Cái này :

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)

Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2

11 tháng 10 2018

a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)

Mà \(\left|y-1\right|+\left|5-x\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)

Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)

b)  Ta có: \(\left|y-6\right|\ge0\forall y\)

\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)

\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

c) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)

Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)

Vậy \(x>1\)

Tham khảo nhé~

15 tháng 1 2017

Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Rightarrow x=y=\frac{1}{2}\)

24 tháng 1 2019

Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được

\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu "=" khi ay = bx