Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)=\left(a,b,c\right)\) với a,b,c là các số không âm.
Khi đó ta có \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) và ta cần tìm giá trị lớn nhất của biểu thức \(N=abc\)
Ta có \(\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\) , \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân theo vế được \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\) hay max N = 1/8 . Bạn tự tìm giá trị x,y,z
Dự đoán \(x=y=z=1\) ta tính được \(A=6+3\sqrt{2}\)
Ta sẽ c/m nó là GTLN của A
Thật vậy, ta cần chứng minh \(Σ\left(2+\sqrt{2}-2\sqrt{x}-\sqrt{1+x^2}\right)\ge0\)
\(\LeftrightarrowΣ\left(\frac{2\left(1-x\right)}{1+\sqrt{x}}+\frac{1-x^2}{\sqrt{2}+\sqrt{1+x^2}}\right)\ge0\)
\(\LeftrightarrowΣ\left(x-1\right)\left(1+\frac{1}{\sqrt{2}}-\frac{2}{1+\sqrt{x}}-\frac{x+1}{\sqrt{2}+\sqrt{1+x^2}}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)
\(\LeftrightarrowΣ\left(x-1\right)^2\left(\frac{1}{\left(1+\sqrt{x}\right)^2}-\frac{x+1}{\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)
BĐT cuối đủ để chứng minh
\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\ge\left(x+1\right)\left(1+\sqrt{x}\right)^2\)
Đặt \(1+x=2k\sqrt{x}\). Hence, theo Cauchy-Schwarz:
\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\)
\(=\sqrt{2}\left(\sqrt{2}+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\)
\(\ge\sqrt{2}\left(\sqrt{2}+\frac{x+1}{\sqrt{2}}\right)\left(\sqrt{2}x+\frac{x+1}{\sqrt{2}}\right)\)
\(=\frac{1}{\sqrt{2}}\left(x+3\right)\left(3x+1\right)=\frac{1}{\sqrt{2}}\left(3x^2+10x+3\right)\)
\(=\frac{1}{\sqrt{2}}\left(3\left(4k^2-2\right)x+10x\right)2\sqrt{2}x\left(3k^2+1\right)\)
Mặt khác \(\left(x+1\right)\left(1+\sqrt{x}\right)^2=\left(x+1\right)\left(x+1+2\sqrt{x}\right)\)
\(=2k\left(2k+2\right)x=4k\left(k+1\right)x\). Có nghĩa là ta cần phải c/m
\(3k^2+1\ge\sqrt{2}k\left(k+1\right)\Leftrightarrow\left(3-\sqrt{2}\right)k^2-2\sqrt{k}+1\ge0\)
Nó đúng theo AM-GM
\(\left(3-\sqrt{2}\right)k^2-\sqrt{2}k+1\ge\left(2\sqrt{3-\sqrt{2}}-\sqrt{2}\right)k\ge0\)
Hơi đẹp nhỉ nhưng xong r` đó :D
bunyakovsky:
\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(x+1\right)^2\)
\(\Leftrightarrow\sqrt{1+x^2}+\sqrt{2}.\sqrt{x}\le\sqrt{2}\left(x+1\right)\)
tương tự :phần còn lại + thêm với\(\left(2-\sqrt{2}\right)\left(x+y+z\right)\)
\(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)
\(\Rightarrow P\ge\frac{2a}{\sqrt{1+a^2}}+\frac{2b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)
Áp dụng BĐT AM-GM: \(P=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(\le a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+b\left(\frac{1}{4\left(a+b\right)}+\frac{1}{a-b}\right)-c\left(\frac{1}{4\left(b+c\right)}+\frac{1}{a-c}\right)=\frac{9}{4}\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)
đẳng thức trái luôn luôn lớn hơn đẳng thức phải(nhờ bđt coossi) đấu = xảy ra <=> x=2 và y=-3
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)