Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(y\times\frac{15}{2}-\frac{1}{3}\times\left(\frac{1}{4}+y\right)=96\frac{2}{3}\)
\(\Leftrightarrow y\times\frac{15}{2}-\frac{1}{12}-\frac{1}{3}\times y=\frac{290}{3}\)
\(\Leftrightarrow y\times\left(\frac{15}{2}-\frac{1}{3}\right)=\frac{387}{4}\)
\(\Leftrightarrow y\times\frac{43}{6}=\frac{387}{4}\)
\(\Leftrightarrow y=\frac{27}{2}\)
Vậy \(y=\frac{27}{2}\)
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2014}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2013}{2014}\)
\(=\frac{1}{2014}>\frac{1}{2015}\)
3y + 1/2y + 1/4y = \(1\frac{1}{2}\)
15/4y = \(1\frac{1}{2}\)
y = \(1\frac{1}{2}:\frac{15}{4}=\frac{3}{2}:\frac{15}{4}=\frac{2}{5}\)
\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{5}=12\\\frac{x}{5}+\frac{y}{7}=8\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}+\frac{y}{25}=\frac{12}{5}\\\frac{x}{15}+\frac{y}{21}=\frac{8}{3}\end{cases}}}\)
\(\Rightarrow\left(\frac{x}{15}+\frac{y}{21}\right)-\left(\frac{x}{15}+\frac{y}{25}\right)=\frac{12}{5}-\frac{8}{3}\)
\(\Rightarrow\frac{y}{21}-\frac{y}{25}=\frac{-4}{15}\)
\(\Rightarrow\frac{4y}{525}=-\frac{4}{15}\Rightarrow\frac{4y}{525}=\frac{-140}{525}\)
\(\Rightarrow y=-35\Rightarrow x=65\)
Gợi ý: Các biểu thức mũ chẵn đều không âm.
\(a^{2n}+b^{2n}\le0\Leftrightarrow a^{2n}+b^{2n}=0\Leftrightarrow a=b=0\)
a,\(\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\)< \(0\)
Vì \(\left(x-\frac{2}{5}\right)^{2010}\);\(\left(y+\frac{3}{7}\right)^{468}\)đều > \(0\)
=> \(\left(x-\frac{2}{5}\right)^{2010}=0\)
\(\left(y+\frac{3}{7}\right)^{468}=0\)
=> \(\left(x-\frac{2}{5}\right)^{2010}=0^{2010}\)
\(\left(y+\frac{3}{7}\right)^{468}=0^{468}\)
=> \(x-\frac{2}{5}=0\)
\(y-\frac{3}{7}=0\)
=> \(x=\frac{2}{5}\)
\(y=\frac{3}{7}\)
Vậy \(x=\frac{2}{5}\)\(y=\frac{3}{7}\)