K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

vì x+y=1 nên (x+y)= 13=1

áp dụng hằng đẳng thức ta có

\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3=1\)

                           \(x^3+y^3=1-3x^2y-3xy^2\)

                           \(x^3+y^3=1-3xy\left(x+y\right)\)

                          \(x^3+y^3=1-3xy\)

                          \(x^3+y^3+3xy=1\)

24 tháng 6 2016

cách 2:

vì x+y=1 nên => x=1-y

thay x=1-y vào M  ta được

\(\left(1-y\right)^3+3\left(1-y\right)y+y^3\)

\(=1^3-3y+3y^2-y^3+3y-3y^2+y^3\)

\(=1^3=1\)

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

Lời giải:

a.

$27A=x^3-9x^2+162x-27=(x-3)^3+135x$

$=(303-3)^3+135.303=27040905$

$A=1001515$

b.

$B=2[(x+y)^3-3xy(x+y)]-3[(x+y)^2-2xy]$

$=2(1-3xy)-3(1-2xy)=2-6xy-3+6xy=-1$

c.

$C=x^3+y^3+3xy(x+y)=(x+y)^3=1^3=1$

 

15 tháng 5 2022

C1 : x3+y3+3xy=(x+y)(x2-xy+y2)+3xy=x2+y2+2xy=(x+y)2=1

C2 : x3+y3+3xy=x3+y3+3xy(x+y)-3xy(x+y)+3xy 

                         =(x+y)3+3xy[1-(x+y)]=1+3xy(1-1)=1+0=1

Mình mới nghĩ ra 2 cách đó thôi à :v

thanks bn nhiều!!!

5 tháng 7 2015

x3​-y​3-3xy=x3-y3-3xy.1

mà x-y=1 nên

x3-y3-3xy=x3-y3-3xy.(x-y)

=x3-y3-3x2y+3xy2

=(x-y)3

=13

=1

vậy với x-y=1 thì B=1

5 tháng 7 2015

vì x-y=1 nên ta cũng có 
x^3-y^3-3xy=x^3-y^3-3xy(x-y)=(x-y)^3=1 

10 tháng 6 2023

A=x^3 + y^3 + 3xy(x+y)
  =x+3x^y+3xy^2+y^3
  =(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
  =(x+y)^2+4=4+4=8

C=x^3+y^3+3xy(x+y)+7(x+y)

  =(x+y)^3+7(x+y)
  =2^3+7.2
  =8+14=22

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

18 tháng 9 2016

\(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\)

\(=>\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)

Mà x+y = 1 

\(=>\left(x+y\right)^3=1\)

Vậy \(N=x^3+y^3+3xy=1\)

Câu b làm tương tự bạn nhé !!

a,\(\left(x^3+y^3\right)=x^3+y^3+3x^2y+3xy^2\)

\(\Rightarrow\left(x^3+y^3\right)=x^3+y^3+3xy\left(x+y\right)\)

\(x+y=1\)

\(\Rightarrow\left(x^3+y^3\right)=1\)

Vậy \(N=x^3+y^3+3xy=1\)

Bạn tự làm tiếp nha

2 tháng 7 2018

a, \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy=x^2-xy+y^2+3xy=x^2+2xy+y^2=\left(x+y\right)^2=1\)

b, tương tự a

c, Sửa đề Cho a+b=1. Tính giá trị của các biểu thứ :A= a3+b3+3ab(a2+b2)+ 6a2b2(a+b)

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay a+b=1 vào A ta có:

\(A=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

d. \(B=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=\left(x+y\right)\left(x+y-4\right)+1\)

Thay x+y=3 vào B ta có:

\(B=3\left(3-4\right)+1=3.\left(-1\right)+1=-3+1=-2\)