K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)

Vì x + y = 1 nên A = 1 - 2xy

Áp dụng btt co-si ta có:

\(xy\le\left(x+y\right)^{\frac{2}{4}}=\frac{1}{4}\)

\(\Rightarrow A\ge1-\frac{1}{2}=\frac{1}{2}.GTNN_A=\frac{1}{2}\)

26 tháng 10 2019

A= \(\frac{1}{\left(x+y\right)\left(x^2+y^2-xy\right)+xy}+\frac{4x^2y^2+2}{xy}=\)\(\frac{1}{x^2+y^2}+4xy+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\) (1)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};a+b\ge2\sqrt{ab},\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)áp dụng vào trên ta được

 (1) \(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4}.\frac{4}{\left(x+y\right)^2}=4+2+\frac{5}{4}.4=11.\)

dấu '=" khi x=y = 1/2

5 tháng 5 2021

pro rồi thì bạn cần gì mình giải nhỉ

??

NV
5 tháng 5 2021

\(A=x-2y+3\Rightarrow x=A+2y-3\)

\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)

\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)

\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)

\(\Leftrightarrow-7A^2+42A-31\ge0\)

\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)

1 tháng 1

\(A=x^2+xy+y^2-3(x+y)+3\\2A=2x^2+2xy+2y^2-6(x+y)+6\\=(x^2+2xy+y^2)-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)\\=(x+y)^2-4(x+y)+4+(x-1)^2+(y-1)^2\\=(x+y-2)^2+(x-1)^2+(y-1)^2\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x+y-2\right)^2\ge0\forall x,y\\\left(x-1\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x+y-2\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow2A\ge0\forall x,y\)

\(\Rightarrow A\ge0\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x-1=0\\y-1=0\end{matrix}\right.\Rightarrow x=y=1\)

Vậy \(Min_A=0\) khi \(x=y=1\).

\(\text{#}Toru\)

NV
1 tháng 1

\(2A=2x^2+2y^2+2xy-6x-6y+6\)

\(2A=\left(x+y\right)^2-4\left(x+y\right)+4+\left(x-1\right)^2+\left(y-1\right)^2\)

\(2A=\left(x+y-2\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\)

Do \(\left\{{}\begin{matrix}\left(x+y-2\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)

\(\Rightarrow2A\ge0\Rightarrow A\ge0\)

Vậy \(A_{min}=0\) khi \(\left\{{}\begin{matrix}x+y-2=0\\x-1=0\\y-1=0\end{matrix}\right.\) hay \(\left(x;y\right)=\left(1;1\right)\)

5 tháng 2 2017

Ta có:  x^3 + y^3 + xy= (x+y)^3 - 3xy(x+y) + xy

                                  = 1 - 3xy + xy

                                  =  1- 2xy

                                  =  1 - 2xy + (xy)^2 - (xy)^2

                                  = (1 - xy)^2  - (xy)^2

                                  =  (1 - xy + xy)(1-xy-xy)

                                  =  1-2xy  >=  1/2

 Vậy MinA = 1/2 

17 tháng 12 2018

\(x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

... 

6 tháng 11 2016

Câu sau thì min của nó cũng là \(\frac{5}{2}\)và cũng đạt được khi x = y = 1 luôn đấy

4 tháng 11 2016

đề bà có cho a;b > 0 ko bạn
 

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân